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Executive Summary 
The complexities of the heavy truck ecosystem pose challenges to the security of the ECU               
networks contained within the vehicles. This paper describes some of the major sources of              
complexity, and how each can be addressed to design and implement a secure robust ECU               
provisioning system. Such a system is required in order for the various ECUs to form and                
maintain trust relationships with each other and with external devices, for the entire lifespan of a                
truck. Many of these problems are well studied elsewhere by the security community, but here               
we apply these long-established security concepts to the heavy truck industry. 
 

List of Best Practices 
The following best practices are collected from the body of the document, and are all intended                
to protect the assets critical to a provisioning system: private key root of trust, ECU identities,                
certificates, and keys assigned to ECUs. 

01. General Protection Goals 
a. Hold the root of trust of the provisioning system in an HSM (Hardware Security              

Module) 
b. Protect the integrity of ECU identities that are passed to the ECU during             

manufacturing 
c. Protect the integrity, confidentiality, and availability of certificates and keys          

assigned to ECUs 
02. Design provisioning systems to function with intermittent connectivity 
03. On-premises appliances need to be implemented as hardened devices 

a. Mitigate the risk of lost, stolen or physical compromise; do not store secrets             
persistently 

b. Designed and implemented to operate only on small batches of temporary           
information 

04. Design provisioning systems as distributed systems 
a. Include delegation of provisioning authority in the design 
b. Limit the scope of authority of delegation by role, time, rate and quantity 

05. Design for long lifespans 
a. Plan for regular deployment of security patches, signed by the authority           

(delegated or otherwise) of the provisioning system 
b. Include replacement of keys and certificates in the design 
c. Arrange disaster recovery and business continuity plans with suppliers and          

partners 
d. Include revocation and expiry of authenticators; revocation requires connectivity.         

Include cryptographic agility in the designs using a protocol version indicator,           
allowing algorithm co-existence but not protocol negotiation 

06. Design for support of aftermarket authentication and provisioning of ECUs (e.g., repairs            
beyond the end-of-life date) 
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07. Design for re-provisioning in completely offline manner (e.g., repairs in remote locations) 
a. Include support for updates via long latency data paths such as USB 

08. Avoid common mistakes 
a. Do not share secrets across ECUs 
b. Do not share provisioning secrets over weak channels, use out-of-band transfer 
c. Do not use Trust-On-First-Use unless in a secure environment 
d. Do not use plaintext key provisioning 
e. Do not use secret algorithms to protect provisioning or other sensitive assets; use             

public algorithms and secret keys 
f. Do not embed secrets in offline tools 
g. Do not allow unauthenticated privileged access (including JTAG/SWD) 
h. Do not use random number generator sources with insufficient entropy 
i. Do not use deprecated cryptography 
j. Do not reuse keys for multiple purposes 
k. Do not develop your own cryptographic implementations or design your own           

algorithms. Use a well established implementation library reviewed by the          
security community 

09. Ensure in-vehicle systems have a minimum set of security requirements so that            
provisioning system security is not undermined 

a. Secure Boot 
b. Authenticated access 
c. Cryptographically appropriate entropy source 
d. Secure storage 
e. Secure firmware updates 
f. Implement security testing during the development lifecycle 
g. Implement privilege separation (hardware-enforced using the MMU/MPU where        

possible) 
10. Design for communication security 

a. Implement end-to-end protection between the ECU and the back-end 
b. Replay attack resistance 
c. Brute force mitigations 
d. Certificate pinning 
e. Side channel attack resistance 
f. Mutual TLS 

11. Design for storage security 
a. Partition mutable and static data 
b. Use authenticated encryption modes like AES-GCM 
c. Implement anti-rollback protections 
d. Use a hardware root of trust 
e. Implement access controls in the storage system 
f. Use a layered key storage system 

12. Design for access controls 
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a. Avoid passwords; use key-based authentication with private keys stored in an           
HSM on the back-end 

b. Do not store private keys or other secrets in the diagnostic or manufacturing tools 
c. Isolate and separate roles where appropriate 
d. Implement an audit trail with suitable logging; Do not log sensitive data 

13. Design for key management 
a. Generate keys in a secure environment (in an HSM, or within the ECU) 
b. Select appropriate algorithms and key sizes for each protocol and application of            

cryptography 
c. Use hardware-backed key storage within the ECU 
d. Protect provisioned keys during transport using TLS or equivalent 
e. Use different signing keys (firmware and certificate signing) for each product or            

product family 
f. Include key revocation and replacement mechanisms 
g. Purge keys (from memory, storage, and backups) when no longer needed, at the             

earliest opportunity 
h. Implement secure scrap procedures, including blacklisting scrapped and stolen         

ECUs 
i. Use robust key ceremonies following the HSM vendor’s guidelines during crucial           

activities 
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Introduction 
Historically, threat models within the heavy truck industry have been well understood:  
 

● Is someone going to steal a truck or its cargo?  
● Is someone modifying log books (electronic or otherwise) to commit fraud?  
● Are freight classifications being intentionally misapplied in order to unfairly compete or            

enable price collusion?  
 

Under these threat models, the mitigations (such as regular audits), are well understood and              
have been applied for many decades. But like many other industries, the threat landscape is               
evolving to include many interconnected systems, which results in increased complexity.  
 
Current vehicle architectures include complex segmented networks consisting of numerous          
Electronic Control Units (ECUs). These include: 
 

● Powertrain Control Modules (PCMs) controlling the engine and related systems, 
● Chassis or Body Control Modules (BCMs) controlling a variety of safety critical systems, 
● Fleet management and telemetry systems used to monitor vehicle health and ensure            

cargo can be tracked and delivered on time,  
● Telematics systems and event data recorders serving insurance and compliance          1

purposes, 
● Internet-connected infotainment systems, 
● Repair and diagnostic equipment that must safely and reliably interoperate 

 
The development of newer technologies are laying a foundation to enable autonomous vehicles             
(AVs), which will need to safely adapt to the congested and varied transportation environment.              
Some of these technologies include: 
 

● Vehicle-to-Infrastructure (V2I) technology that will allow vehicles to communicate with          
roadside infrastructure,  

● Vehicle-to-Vehicle (V2V) that enables direct communication with other vehicles to share           
information about road maintenance, weather, and traffic conditions, 

● Computer vision, Machine Learning (ML), expert systems, and other Artificial Intelligence           
(AI) technologies which are all making their way into connected vehicles at an exciting              
rate.  

 
With all of this added complexity comes additional attack surfaces and threat models that need               
to be re-evaluated to compensate. 

1 https://en.wikipedia.org/wiki/Event_data_recorder  
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● The pervasive growth of systems attaching to vehicle networks results in an increased             
attack surface for safety critical ECUs. While CAN bus segmentation (using CAN bus             
gateways, etc.) are gaining traction to address this; moving towards AVs necessitates            
more interconnection of systems and more connectivity to the Internet, lessening the            
ability to appropriately segment the vehicle network. This increases the likelihood of            
security vulnerabilities turning into safety-critical issues. 

● Remote diagnostics and over-the-air firmware update solutions (FOTA) provide         
additional remote connection points that may be vulnerable to attackers. 

● If machine learning assets are not routinely monitored and adequate countermeasures           
are not integrated into the system, attackers can poison the data pool over time by               
providing adversarial samples as input to the system. This can lead to systems             
misclassifying objects or misinterpreting sensor input, which can have a real-world safety            
impact for road users. 

● Connected systems such as telematics units may inadvertently leak location and identity            
data, which can enable surveillance and tracking of heavy truck fleets. This may allow              
targeted cargo theft or the collection of competitive and commercially sensitive vehicle            
performance data, which may in turn allow insider trading, unfair competition, and other             
business concerns. 

● Ransomware and other denial-of-service (DoS) attacks can cripple a transport business           2

or even deprive entire cities of vital resources such as food, water, and fuel.  
● Growth of software companies’ involvement within the vehicle changes the business           

model for OEMs drastically. Expect vehicles to remain on the road for at least a decade                
and to have increasing dependence on third-party software companies, cloud solutions,           
etc. There has been a rise in mergers, acquisitions, and consolidations to support this              
growth industry. This thrash, while necessary, could result in growing concerns around            
supporting vehicles on the road in the long term (both from a functionality and a security                
perspective). 

 
Ensuring the security of the system both now and for the defined lifetime is the overall goal. One                  
of the foundations of a secure system is integrity: 
 

● It must be possible to tell that a system has not been tampered with and that the system                  
is fit for purpose.  

● ECUs must protect the communication paths between each other. 
● ECUs must form trust relationships with each other even when they are each             

manufactured by a different supplier. 
● Interactions with external services like diagnostics and repair systems, V2V and V2I            

systems must be managed securely. 
 

2 https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world  
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This paper concerns itself primarily with the management of these keys, specifically how they              
are generated, safely stored, provisioned to devices within vehicles, and revoked in the event of               
a compromise. While the fundamental concepts are general and well-studied by the security             
community, their application to the complexities of the heavy truck ecosystem is not always              
immediately obvious. Consequently, many truck suppliers, OEMs, and operators struggle to           
implement robust modern solutions. When a single entity designs and implements the entire             
system, solving these issues would seem like straightforward engineering work. However, as            
businesses increase levels of outsourcing (e.g., sourcing of components and devices, inclusion            
of firmware libraries, ensuring the overall security, safety, and integrity of the vehicle and              
sub-systems becomes much more complicated.  
 
Many security protections find their foundations in the mathematics of cryptography. This            
requires the use of secrets to protect data and to authenticate devices and firmware. We note                
that there have been some efforts to standardize some of these cryptographic concepts in the               
vehicle space in the form of ISO20828:2006 and others . These have seen relatively poor              3 4

adoption, likely owing to the lack of prescriptive and practical details and the lack of guidance to                 
bootstrap the cryptographic protections. These gaps are what this document aims to cover.             
Failure to handle the secrets with care can result in compromise. When compromise occurs,              
systems with functionality that requires security guarantees become unreliable. 
 
The heavy truck ecosystem will securely provision other data, in addition to keys, and in               
particular, an important security foundation is identity. Each ECU needs to be uniquely             
identifiable in a manner that avoids spoofing, counterfeiting, and credential theft. The serial             
numbers, MAC addresses, International Mobile Equipment Identity (IMEI), Vehicle Identification          
Numbers (VIN), etc. all need to be assigned and provisioned into the devices in a way that                 
guarantees their integrity so that they can be trusted for device identification purposes             
throughout the lifetime of the vehicle. The same provisioning systems used to assign keys and               
other secrets to the systems can be used to manage these identities. Such identifiers are               
typically generated offline and programmed into the vehicle systems at the factory when             
suppliers first build devices. OEMs, in the case of the VIN, must also program this identifier at                 
chassis build-time and during part replacements. In all cases, identifiers must be protected from              
being altered by unauthorized users. The authority to program some identifiers (like the VIN)              
must be transferable to various authorized parties throughout the vehicle lifetime and must             
certainly include repair facilities like those owned and operated by the motor freight carriers.  
 
Finally, it is important to note that the word “security” is overloaded in many ways. Depending on                 
the context, security encompasses many concepts, including confidentiality, integrity,         

3 https://www.sis.se/api/document/preview/907544/ 
4 https://icmconference.org/wp-content/uploads/E11c-Whyte.pdf 
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authenticity , availability, privacy, consent , and safety. Throughout this paper, we try to avoid             5 6

the ambiguous term in favor of the specific security traits that are relevant to the discussion. 

Threat modeling 
Threat modeling is a useful exercise that helps describe the overall security objectives of a               
system. Typically, these objectives are associated with classes of threat actors whose goal is to               
compromise the system's critical assets by violating specific security traits of the system. Finally,              
a threat model may also articulate mitigations that define how the system defends itself against               
certain classes of threats. The attack surface is an enumeration of external interfaces by which               
a threat actor can interact with the target system. The threat actor aims to discover               
vulnerabilities in how these interfaces consume inputs that pass across a trust boundary. Here              
we present a brief threat modeling summary of an example provisioning system (see Figure 1). 
 

 
Figure 1: Minimal provisioning service 

 

Assets 
Any discussion of threat modeling needs to start with an enumeration of the assets to be                
protected. The list of assets the industry should consider in heavy trucks is long and varied;                
here we will focus our attention on the provisioning system itself and the assets the system                
provisions. The protection required for each asset may vary, and can include confidentiality,             
integrity, availability, etc. The following lists the major assets for our example provisioning             
system depicted above. 

● The root of trust of a provisioning system will be a private key held within the back-end,                 
preferably in a Hardware Security Module (HSM) . Compromising the confidentiality of           7

this secret would allow an attacker to set up their own system and provision their own                
devices.  

5 https://security.blogoverflow.com/2012/08/confidentiality-integrity-availability-the-three-components-of-the-cia-triad/  
6 https://fieldnotes.resistant.tech/optimal-privacy/  
7 https://en.wikipedia.org/wiki/Hardware_security_module  
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● The integrity of identities that the system manages and passes to ECU manufacturing             
lines for provisioning to ECUs are crucial to limiting counterfeiting operations and            
identifying legitimate devices. 

● Integrity, confidentiality, and availability of certificates and keys assigned to individual           
ECUs are important for integrity and confidentiality protection of their data-at-rest and            
data-in-transit. The data itself may have additional privacy and consent requirements,           
especially within the European Union, where General Data Protection Regulation          
(GDPR) regulations are enforced. 

Threat Actors 
Like the assets, the threat actors of concern can vary widely, and should be considered before                
performing any risk analysis. While this list is ever-changing, it is important to acknowledge the               
nature of the likely threat actors. It may not be possible or practical to defend against all of these                   
individuals or organizations, as doing so may require a significant amount of time, effort, and               
money. The chart below subjectively compares various commonly considered attackers in terms            
of attacker capability and cost to defend against each. The decision about where to set the risk                 
threshold will depend on the individual business. We present a deeper analysis of each              
category of attacker and their capabilities in other NCC Group publications , which for brevity is              8

not reproduced here. 
 

8 
https://www.nccgroup.trust/uk/our-research/security-of-things-an-implementers-guide-to-cyber-security-for-internet-of-
things-devices-and-beyond/  
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Some example scenarios that may be relevant to the provisioning system threat model include: 

● Counterfeiters, seeking to profit from inferior ECU devices, need to gain access to the              
provisioning system in order to have their devices recognized and interoperated within            
the vehicle. 

● An aftermarket repair shop attempts to modify the identity of an ECU in order to load                
firmware from a different product SKU, thereby converting the low-cost SKU to a             
high-cost SKU, without regard for the safety impact of doing so. 

● A contract manufacturing partner attempts to overproduce, selling the excess outside the            
normal sales channel. 

 

Challenges 

General Challenges 
The primary challenges involved in a provisioning system revolve around access control and             
data protection of the sensitive assets (e.g., secret keys). These are actually well studied              
problems and have accepted solutions. When security solutions typically fail to meet the             
objectives, it is often a result of insufficient threat modeling. For example, failing to enumerate               
threat actors, or accepting the associated risks without understanding the real-world           
implications, can lead to a compromise of secrets or unauthorized access to provisioning             
systems.  
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Manufacturing Challenges 
The manufacturing environment can be a challenge for product security, regardless of industry. 
It is uncommon in the trucking industry for factory employees to be made aware of the product 
security requirements, let alone be provided incentives to uphold them. In fact, they may have 
perverse incentives  that run counter to product security objectives. Employees of production 9

facilities may bypass security measures in order to improve throughput and meet their own 
individual targets, which can cause production delays and a reduction in both product quality 
and security. This is difficult to detect if the production line does not include adequate 
end-of-line testing and quality assurance procedures. Suppliers may outsource to sister facilities 
or outside subcontractors to reduce labor costs; this outsourcing may be unknown to the original 
product designer and is often not checked unless the original production contract restricts such 
behavior, or if technical safeguards are in place. Corruption within the factory environment is 
commonplace, and a line worker can make many times their salary by leaking information or 
designs, or by providing network access to external counterfeiters, organized crime gangs, or 
competitors . The provisioning system should help mitigate these challenges in the 10

manufacturing environment. 
 
A provisioning system typically requires exposing some provisioning infrastructure to the factory.            
This is true regardless of who owns the factory, but in the vehicle space, this is most often a                   
Tier-1 supplier rather than the OEM. Some suppliers manufacture ECUs for trucks in             
geographies chosen primarily for the lower operating cost due to differences in labor markets. In               
such locations, reliable internet connectivity may not be a realistic expectation, and so any              
provisioning scheme should be designed to tolerate a certain amount of network downtime. A              
common resolution is to deploy a portion of the provisioning infrastructure directly within the              
factory. This can be extremely problematic if the factory is untrusted . While the factory is               11

frequently a third party (as depicted in Figure 2), no factory, even one that is OEM-owned, is                 
immune to the aforementioned abuses. 
 

 
Figure 2: Provisioning system exposed to factory 

 

9 https://en.m.wikipedia.org/wiki/Perverse_incentive 
10 
https://www.npr.org/2019/01/29/689663720/a-robot-named-tappy-huawei-conspired-to-steal-t-mobile-s-trade-secrets-
says-doj?t=1563815834977  
11 https://www.nccgroup.trust/uk/our-research/secure-device-manufacturing-supply-chain-security-resilience/  
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To counter these concerns, the ECU should be designed to communicate securely with             
provisioning systems in such a way so that a Man-in-the-Middle (MitM) attack within the factory               
cannot compromise the data flows.  
 
The data path may need a local on-premises appliance to account for network downtime              
between the factory and the provisioning service. Any portion of the provisioning system that is               
deployed on-premises needs to be implemented as a hardened appliance, with safeguards to             
mitigate risk in the event that it is lost, stolen, or physically compromised. This appliance should                
be implemented to operate only with temporary data and must connect back to the master               
system at the OEM at regular intervals for refreshes. A compromise of this appliance would then                
only grant the attacker a small duration of autonomy, thus limiting the potential damage. 

 
Figure 3: Application of on-premises appliance 

 
Example implementations may consist of: 

1. A remote provisioning system that generates device certificates. These certificates are           
delivered in batches at a regular cadence to an on-premises appliance within the factory,              
as defined by the network conditions and business and security risk analysis (practical             
frequencies are in the order of every 4 hours, once per day, etc.). The appliance               
provisions these certificates to the devices being manufactured as needed, but cannot            
generate new ones on its own. Enough volume should be delivered in each batch so that                
the expected amount of network downtime can be tolerated. This can be notably higher              
when the factory is in parts of the world with poor internet connectivity. 

2. An on-premises appliance within the factory that contains an intermediate certificate           
authority, capable of signing device certificates as needed. The appliance should store            
the private key corresponding to the intermediate CA certificate only in volatile memory,             
and require an authenticated connection to the master provisioning system to securely            
acquire this cryptographic asset during the appliance startup sequence. The appliance           
must be configured to connect to the master provisioning system on a regular basis (say,               
every 1000 signing requests) to upload transaction logs for audit purposes, and to             
refresh the intermediate CA key as needed. This will prevent the appliance from signing              
additional device certificates in the event that it is lost or stolen. 

Distributed Ecosystem 
The industry is not vertically integrated, which results in a complex ecosystem of electronics              
within the vehicle. A modern truck contains ECUs from a number of different Tier-1 suppliers,               
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which may run firmware provided by other sub-suppliers, and run on processors with firmware              
provided by Tier-2 microprocessor and software suppliers. 
 
The base vehicle platform can be further modified and enhanced by Body Builders, who may               
add various aftermarket features to the base design (e.g., Power Take Off (PTO), sleeper cabs,               
additional control panels for heavy lifting equipment). Here, Body Builders add additional ECUs             
to customize the truck for its application-specific requirements. 
 
Finally, the operator may install their own preferred brand of Telematics Control Unit (TCU) to               
support fleet management, digital tachograph devices specific to their use-case, and other            
aftermarket ECUs to enable any number of additional feature-sets. Once in operation, the             
vehicle will interoperate with yet more third-party systems for repair and diagnostics, V2X, and              
other Intelligent Transport Systems (ITS). All of this complexity poses challenges when the             
ECUs need to form trust relationships with each other and external systems. Identifying the              
difference between legitimate devices and malicious or unauthorized devices on these networks            
is key to a secure system design. A provisioning system that is centrally managed is simpler to                 
build and operate; however, this may not meet the needs of such a complex ecosystem of truck                 
components.  
 
Delegation of provisioning authority from the OEM to the Tier-1 suppliers may be required. This               
can be accomplished through the use of subordinate certificate authorities and certificate chains             
(described in more detail below). OEMs must delegate in a way that does not allow the supplier                 
to assume responsibility for maintaining trust at a vehicle level. Rate limiting that effectively              
prevents more ECUs than ordered from being provisioned, implemented within hardened           
on-premises appliances, can be used to enforce such controls. 

Vehicle Lifespan 
There is a distinct longevity challenge for any security system in this space. Businesses expect               
heavy trucks to last many decades, and often heavy trucks have longevity in excess of one                
million miles , yet security attacks and defenses continue to evolve at an internet-age pace.              12

This is in stark contrast to other markets: most consumer electronics are often designed to have                
a relatively short half-life (often as short as 6 months); consumer vehicles typically only last               
about 200,000 miles .  13

 
A crucial defense over such long timeframes is to provide regular software and firmware              
security-patch updates. As new issues and vulnerabilities are discovered, OEMs should provide            
access to fixes in aftersales. This cadence requires that active vulnerability management take             
place for the life of the vehicles, and that reliable and integrity-assured over-the-air firmware              
update capabilities be implemented. The heavy truck industry must evaluate the model for             

12 https://www.auto.edu/blog/13-solid-stats-about-driving-a-semi-truck-for-a-living/ 
13 https://www.consumerreports.org/car-repair-maintenance/make-your-car-last-200-000-miles/  
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long-term support, as more functionality is dependent on software libraries developed by the             
tech industry, which has shorter product lifecycle requirements. 
 
Likewise, authenticator management across multi-decade support lifetimes can be a daunting           
commitment. OEMs need a scalable solution to replace expired or revoked keys and             
certificates. Suppliers need to remanufacture replacement devices or refurbish ECUs long after            
the original production ends. The heavy truck industry needs to arrange disaster recovery and              
business continuity plans should any partner or supplier involved fail to uphold these lengthy              
commitments. The heavy truck industry can use software and key escrow to hedge against such               
risks.  
 
Authenticators that outlive the protections placed on them may outlive their usefulness. For this              
reason, authenticators may be designed to either be revoked or to expire (or both). Revoking               
authenticators can be problematic in situations with limited connectivity; however, such           
connectivity, however infrequent, is required for revocation information to be communicated to            
the ECU endpoints. Expiry has a requirement for a reliable time source, which can come in                
various flavors (GPS time, count of the number of boot cycles, count of the number of back-end                 
connections). Integrity protection of the timebase’s storage is a must to prevent tampering such              
as rollback. If the source of the time measurement is external to the ECU (such as NTP or                  
GPS), then communications with that source must be protected from tampering , and clock drift              14

corrections must be applied in a smooth and monotonically increasing manner. The exact             
implementation will depend on the design constraints of the system, however, balancing this             
with the need for continuous vehicle operation is obviously important. The provisioning strategy             
needs to define both policy and system behavior upon expiry/revocation such that both needs              
can be met. 
 
Finally, cryptographic algorithms, the core of many security protections, get weaker over time.  

● The algorithms undergo constant cryptanalysis, where new mathematical attacks are          
discovered , and new implementation flaws are uncovered. 15

● Unforeseen system-level issues and novel attack techniques can be discovered, such as            
side-channel  and fault injection  attacks. 16 17

● Most algorithms rely on the computational infeasibility of brute forcing their solution, an             
assumption that degrades as new more powerful hardware is developed each year. Real             
world examples of long running attacks have set benchmarks for brute force capabilities            

. It is vital to choose key sizes of sufficient strength to eliminate such possibilities. 18

14 https://arxiv.org/pdf/1710.05798.pdf 
15 Xiaoyun Wang, et al: http://dx.doi.org/10.1007/11426639_2  
16 https://en.wikipedia.org/wiki/Side-channel_attack  
17 https://www.riscure.com/uploads/2018/06/Riscure_fault-injection-on-diagnosis-protocols-presentation.pdf  
18 https://en.wikipedia.org/wiki/RSA_Secret-Key_Challenge  
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● Quantum computing is an area of intense research and is expected to defeat most public               
key cryptosystems. The implementation of quantum-safe algorithms is likely to be           19

needed within the lifespan of current vehicles. 
 
The lesson is this: what was considered secure yesterday, may not be considered secure              
tomorrow. Most pronounced is the problem concerning the security of any data-at-rest where             
the cryptographic protection is not ephemeral. To hedge against any rapid attack evolution (in              
particular unforeseen or rapid innovations), cryptographic agility is needed, whereby the           
protocols themselves can support upgrades to the fundamental algorithms that they use. The             
dynamic nature of cybersecurity risk is an outlier for the heavy truck industry. Existing risk               
analysis techniques, which characterize risk for mechanical parts with predictable failure modes,            
cannot be readily adapted to measure cybersecurity risk. As the heavy truck industry             
future-proofs new designs, the selection of protocols to support cryptographic agility is important             
to address the longevity requirements. Future-proofing a design for algorithm agility doesn’t            
necessarily mean planning for significant resource overhead since, as discussed in later            
sections, newer algorithms are always developed to be performant and aren’t necessarily            
slower than older ones. 
 
It must be noted that designing such flexibility is often the source of its own problems if done                  
incorrectly. Algorithm agility refers to the ability of a system to be easily upgraded to support                
new algorithms as old ones become obsolete. This is done properly with a protocol version               
indicator, allowing several versions to coexist on a given communication link or storage system.              
However, implementers aiming for algorithm agility often unintentionally implement algorithm          
negotiation, in which all individual algorithms are dynamically negotiated, leading to much            
implementation complexity, and unforeseen issues with "bad combinations," downgrade attacks,          
or worse . There have been countless examples of vulnerabilities of this nature in TLS , that               20 21 22

are instructive of what not to do. 

Right to Repair 
The right to repair movement adds another layer of complexity. While heavy trucks are              23

specifically excluded from Bill H-4362 in the US market, it is mentioned here as a risk,                24

considering that tractors and smaller vehicles are already under scrutiny. Heavy trucks are not              
exempt from similar independent repair legislation in Europe and sales of trucks for European              25

export market must meet this requirement. A system built so secure that not even the owner can                 
repair it may actually become illegal in some jurisdictions. This, in principle, is a good thing; the                 
device may outlast the original manufacturer or one of its suppliers and still have a serviceable                

19 https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization  
20 https://en.wikipedia.org/wiki/Null_encryption  
21 https://www.acunetix.com/blog/articles/tls-vulnerabilities-attacks-final-part/  
22 https://en.wikipedia.org/wiki/Cipher_suite#Vulnerabilities  
23 https://repair.org/automotive  
24 https://malegislature.gov/Bills/187/H4362  
25 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32009R0595 
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life. The lack of vertical integration exacerbates this risk. Routinely, we see vehicles being sold               
in whole or in part to buyers in less developed countries, long past the end-of-life date planned                 
by the OEM. There are vast numbers of repair shops beyond the OEM authorized dealers that                
keep vehicles on the road. Most larger operators have in-house repair shops as well. All of                
these mechanics need to at least be able to interface diagnostic tools with the electronic               
systems in the vehicle; in many cases, replacement of ECUs and sensors connected to these               
ECUs is necessary. 
 
Supporting an ecosystem that supports the aftermarket authentication and provisioning of ECUs            
may be required. Code, keys, and systems may need to be placed in escrow to allow for                 
circumstances such as a major supplier going out of business. 

Offline Operation 
Because of the complex ecosystem, design of provisioning services cannot assume connectivity            
is always available. Consider repair shops that must be able to access ECU systems for               
diagnostic purposes, but that may not have Internet connectivity for a variety of practical              
reasons (e.g., cost, remoteness). Because of this, certain systems may need to interact with the               
ECU for provisioning purposes in a completely offline manner. For such situations, often we find               
that the credentials or secrets necessary to access the ECUs privileged interfaces are             
erroneously embedded within the host-side diagnostic applications. This allows anyone with a            
copy of this software to extract it. With modern cellular connectivity, the need for truly offline                
operation may no longer be required in many cases. However there are still places, far from                
cities (like the northern tundra), where trucks regularly operate for much of their lifespan without               
hopes of even intermittent connectivity. While such isolation limits the opportunistic attacks that             
the vehicles may experience, targeted attacks are high on the list of threat models for such                
operators.  
 
Solutions to support extended vehicle isolation may include: 

● Direct vehicle-to-vehicle updates, allowing one vehicle to securely update from another           
that has more frequent connectivity. 

● Support for updates via long latency data paths using physical links like USB and OBD2.               
In such an implementation, a normal cryptographic challenge/response protocol is used           
for authentication; however, the timing constraints are relaxed enough to permit many            
days or weeks between the challenge and the response, which allows for creative             
transport solutions such as using the postal service. 

● Support for satellite and other remote connectivity in the diagnostic tools and systems. 
● Lengthy deferral of updates to allow uninterrupted operation until such time as            

connectivity can be restored (i.e., allowing the operator/owner to accept the risk). 

Common Mistakes 
There are a number of ways that provisioning systems typically fail. Some of the most common                
design mistakes are discussed here as instructive examples of what not to do. 
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● Shared provisioning secrets. Provisioning each device with the same secret key is a             
common mistake. This leads to a situation where an attacker may compromise a single              
device, and then leverage the information gained to compromise all other devices with             
no extra effort, thus allowing attacks to scale in a very low-cost manner. This is the                
so-called, “break once, break everywhere” model, and it should be avoided. 

● Key exchange for symmetric keys. Symmetric key cryptography is simpler and less            
resource-intensive than its asymmetric counterpart, however, it is often accompanied by           
a weak key exchange. Sharing of symmetric secrets requires an out-of-band channel to             
avoid interception by a passive adversary on the channel.  

● Trust-on-first-use. A trust model where one party to the communication does not know             
about the other beforehand. Upon seeing the remote party for the first time, it records the                
details and trusts it from then on. This does work to form a strong authentication bond                
between the communicating parties, however, it is vulnerable to attack during the first             
connection when establishing the trust relationship. OEMs should only use this model if             
the first use or registration occurs in a trusted manufacturing facility. Truly trustworthy             
environments are a serious challenge of their own, even in OEM-controlled factory            
facilities. Care must also be taken to avoid mechanisms whereby the attacker can “reset”              
the state to make the provisioning system think it is seeing an ECU for the first time                 
again. 

● Plaintext key provisioning. This is common in systems where the secrets are            
generated offline and pushed down to the embedded system. Because the local physical             
connections to the devices (e.g., USB, serial, OCD) and the factory networking            
connections are rarely encrypted, adversaries with access to the factory systems are            
able to easily intercept these secrets. A safer solution is to generate keys within the ECU                
itself, and export necessary information to the back-end in an encrypted form. 

● Secret algorithms. Secret algorithms used to generate passwords, keys, or other           
authentication tokens are still very common. For example, the SecurityAccess          
authentication mechanism in ISO 14229 Unified Diagnostic Services is ubiquitous          
throughout the automotive industry and relies on “secret” algorithms to derive the key             
from the seed. The danger here is that once the algorithm has been extracted and               
reverse engineered, the secret is completely compromised, creating situations which          
enable attackers to carry out their objectives. 

● Offline tools with embedded secrets. Related to the previous mistake, offline           
diagnostic tools are a common place to find sensitive secrets. These are common in the               
automotive market for Unified Diagnostic Services, and the same has been found to hold              
true in the heavy truck space. Unique to the off-highway heavy vehicle market is the               
need to provide diagnostic support in remote unconnected parts of the world. This             
requires authentication schemes that are not reliant on Internet connectivity, and           
frequently this involves embedding a secret within the diagnostic software tools. If an             
attacker is able to reverse engineer a copy of the host-side diagnostic software, then              
they can extract the secret. This broken security model can be a challenge for OEMs               
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wanting to move to an always on-line solution where the secrets are stored remotely on               
back-end servers. 

● Unauthenticated privileged access: Unauthenticated debug ports are still the most          
common means to compromise embedded devices when physical access is available,           
and heavy truck ECUs are no exception. The privileged interfaces exist for a variety of               
legitimate reasons, including manufacturing, Fault and Failure Analysis (FFA),         
development, and diagnostics. But leaving these interfaces unauthenticated, or weakly          
authenticated, allows attackers the same privileges. Classic examples of weak          
authentication include static passwords/keys (break once, break everywhere), or         
predictable keys derived from public information such as component serial numbers or            
VINs. A strong public key based challenge-response protocol is recommended to           
mitigate this risk. 

● Insufficient entropy. Not enough randomness, or otherwise weak key generation, has           
led to predictable keys in many systems. Sometimes this stems from a failure to properly               
characterize the entropy source before use. More often this is either a) an integration              
issue, where one supplier leaves a software hook for another supplier to implement, and              
its implementation is forgotten or otherwise neglected, or b) a lack of entropy entirely, in               
which a constant or predictable value (like the time of day) is used as a seed to a                  
predictable pseudo-random number generator function. 

● Deprecated Cryptography: The use of outdated and obsolete cryptographic algorithms,          
modes, and key sizes is still a widespread problem across many industries, not just              
heavy trucking. Backward compatibility with legacy systems can explain some design           
patterns, but much of this is just momentum and lack of business drivers, such as               
customer input or regulations. A non-exhaustive list of algorithms that are commonly            
used, but that must be avoided include SHA1, MD5, DES, 3DES, and RC4. 

● Key Reuse. Overloading the use and purpose of cryptographic keys is a bad practice,              
and can lead to several devastating cryptographic attacks. Some examples include: 

○ Keys that are used for both signing and encryption can lead to a compromise of               
the keys themselves. 

○ A single key used to sign files that are intended for different purposes (e.g.,              
firmware, OEM configuration) may lead to image type confusion issues and allow            
an attacker to leverage the signer as an oracle to sign arbitrary files. 

● Other Improper Cryptography. Cryptography is easily misused and error-prone. Even          
simple mistakes can lead to catastrophic results. Knowing the bounds of the problem             
and applying the correct cryptographic solutions requires expert advice and          
misuse-resistant libraries. The list of cryptographic mistakes is endless, but some of the             
common ones include padding oracle attacks, initialization vector and nonce reuse,           
length extension attacks, use of ECB mode, timing attacks, poor parameter validation,            
and small key size. 

 

 
© Copyright 2019 NCC Group  

 18  

 
 



 
 

Solution Requirements 
Building any secure embedded system and incorporating them into a complex vehicle network             
requires a large number of security measures and mitigations. We are limiting the focus of this                
document to only those security requirements directly associated with a robust provisioning            
system and the corresponding data; The security of the vehicle system as a whole is beyond                
our scope. 
 
It is worth at least mentioning some of the other platform security measures on which such a                 
vehicle system will depend to prevent its security from being undermined. Many of these are               
considered bare-minimum security measures for any modern product built this decade, yet            
many of these are still commonly missing or fatally flawed in embedded systems used in the                
trucking industry, even those still under development in 2019. We note that this list is by no                 
means complete. 
 

● Secure Boot, or an equivalent boot-time integrity validation system, is needed to ensure             
that any of the firmware responsible for implementing the ECU side of the provisioning              
system can itself be trusted to behave as designed. Such a boot scheme will involve               
each stage of the boot process cryptographically validating subsequent stages before it            
is executed. This will begin at the earliest stage in the hardware ROM so that there is no                  
possibility of running firmware that is untrusted (assuming no implementation flaws). It            
must implement anti-rollback protection to prevent attackers from downgrading firmware          
to known-vulnerable versions. 

● Authenticated access provides strong guarantees that only authorized agents are able           
to access privileged functionality of the device: functionality for developers,          
manufacturing, aftersale field diagnostics, and RMA refurbishment. Much of this          
privileged functionality can be used to undermine the security of the system if misused,              
so ensuring that it is only accessible to authorized agents is vital. Unauthenticated debug              
ports (commonly JTAG/SWD, UART, or USB) is a fatal security flaw for any device              
where a threat actor will have such physical access. Authentication needs to be             
implemented within all accessible code modules, including bootROMs, bootloaders,         
operating systems, and applications. 

● An entropy source that is cryptographically random, (i.e., a hardware random number            
generator) is an important requirement for much of the cryptographic implementations           
that the system will rely on. Choosing a hardware component that supports this need is               
the simplest approach, but does require foresight. Common processors and          
System-on-Chips (SoCs) contain such functionality built directly into the silicon. 

● Secure storage is important for anything that must be persisted and will provide integrity              
and confidentiality guarantees as needed, depending on the data. Only the OEM has a              
need to modify some of these data items, such as ECU-to-vehicle relationships, while             
others will need access for aftersales. These different scenarios will dictate the            
implementation of the security measures for the storage system. The integrity           
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guarantees will normally include anti-rollback protection preventing the entire filesystem          
(or subset thereof) from being reverted to an older, but still valid state, and preventing an                
attacker from selectively modifying or reverting individual data records. 

● Secure firmware update functionality needs to be implemented with integrity          
assurances regardless of the delivery method (e.g., local USB, OBD2, CAN bus,            
over-the-air, removable flash memory cards). The ability to update devices for aftersales            
is especially important given the long lifespan of heavy trucks. As researchers constantly             
discover new vulnerabilities, providing a means to patch these in a timely manner is a               
primary defense to the vulnerabilities being exploited. It is simply not feasible to             
implement a system and expect it to remain secure without a means to fix security               
aftersale vulnerabilities. Example implementations are out of scope, but some are well            
documented elsewhere , , , . Common traits of such systems include transport         26 27 28 29

security, pre-install image validation, and strong firmware manifest management. 
● Security testing is different than regular functional and performance testing. While the            

latter aims to test whether the system does what it is supposed to, security testing               
explicitly tries to determine if the system does anything it is not supposed to. Such               
testing uses a variety of techniques including manual code review, automated static            
analysis, and dynamic analysis such as fuzzing . If security testing is not incorporated             30

into the development process, then security vulnerabilities will not be detected and fixed             
at the earliest and cheapest opportunity. Rather, you will need to rely on customer              
feedback to report discovered issues. External security reports can be unreliable: users            
may not have the expertise to effectively report security issues; customers may be more              
interested in suppressing the knowledge for fear that attackers may learn about the             
vulnerability; researchers may find it more lucrative to sell the information to bad actors.              
A secure software development process will incorporate robust security testing at           
multiple points. There are many public resources to help with this . 31

 
For the provisioning system itself, we divide the security requirements into a few broad              
categories: communication security, storage security, key management, and access control. We           
will discuss the high-level requirements only, as the actual implementation can vary widely and              
will depend on many implementation decisions. 
 
Before discussing the security requirements in detail, some background on the cryptographic            
tools at our disposal is needed. 

26 https://uptane.github.io/  
27 https://github.com/Microsoft/CFU  
28 https://theupdateframework.github.io/  
29 https://arxiv.org/pdf/1807.05002.pdf 
30 https://www.f-secure.com/gb-en/consulting/our-thinking/15-minute-guide-to-fuzzing 
31 https://blogs.msdn.microsoft.com/microsoft_press/2016/04/19/free-ebook-the-security-development-lifecycle/ 

 
© Copyright 2019 NCC Group  

 20  

 
 

https://uptane.github.io/
https://github.com/Microsoft/CFU
https://theupdateframework.github.io/
https://arxiv.org/pdf/1807.05002.pdf
https://www.f-secure.com/gb-en/consulting/our-thinking/15-minute-guide-to-fuzzing
https://blogs.msdn.microsoft.com/microsoft_press/2016/04/19/free-ebook-the-security-development-lifecycle/


 
 

Cryptographic Concepts 
This section contains some brief, non-mathematical descriptions of the cryptographic building           
blocks that are necessary for building a provisioning system. While it is useful to understand               
these concepts so that they can correctly be applied, the reader is warned that implementing               
and using cryptography is error-prone, and even small mistakes can be catastrophic. Do not              
implement your own cryptographic implementations or design your own algorithms.          
Instead, use a well established cryptographic implementation library reviewed by the security            
community, one that is specifically misuse-resistant. Appropriate choices include BoringSSL ,          32

BearSSL , NaCL , and mBedTLS . 33 34 35

 
Encryption is the mathematical encoding of data such that only an authorized agent with the               
correct key can decrypt it. This is a primary defense for confidentiality protection of data.               
Encryption is used both to protect data-in-transit and data-at-rest. Broadly, these algorithms can             
be grouped into two categories: symmetric and asymmetric algorithms. 
 
AES is a common symmetric algorithm recommended for use in modern systems. It relies on a                
single shared key for both encryption and decryption. Consequently, both parties need to be              
equally trusted not to compromise the key. Symmetric block ciphers operate in different modes              
appropriate for the context. We always recommend using an authenticated encryption           36

scheme (such as AES-GCM, AES-EAX, or ChaCha20+Poly1305) to additionally provide          
integrity. Vulnerable modes like ECB, or obsolete algorithms like DES/3DES/RC4, are           
insufficient for new designs. 
 
On the other hand, asymmetric algorithms use a pair of keys, a private and a public key. This                  
allowed the security community to develop elegant protocols that support integrity protection,            
non-repudiation, identity validation, and other useful security properties. Here developers use           
algorithms such as RSA and ECC. One practical limitation is that asymmetric algorithms are              
generally much slower than their equivalent symmetric counterparts due to resource intensive            
computations (although for large equivalent key sizes -- see table 1 -- ECC is considerably               
faster than RSA) . Another important limitation for RSA specifically, is that it supports only              37

limited-size inputs, making encryption of larger messages or files difficult. Systems commonly            
overcome these limitations by using hybrid encryption schemes: symmetric algorithms with an            
ephemeral key for bulk cryptography and only using the asymmetric algorithms to protect the              
ephemeral key, or by using a Diffie-Hellman (DH) key exchange protocol to negotiate a shared               
symmetric secret for encryption. 
 

32 https://opensource.google.com/projects/boringssl  
33 https://bearssl.org/  
34 https://nacl.cr.yp.to/  
35 https://tls.mbed.org/  
36 https://en.wikipedia.org/wiki/Authenticated_encryption  
37 https://bearssl.org/speed.html 
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Signatures are a special use of asymmetric algorithms where a signature is computed over a               
message (e.g., file, packet) using a private key. The signature can then be validated easily               
using the public key. This provides strong integrity protection against forgery, as only those with               
the private key are able to sign messages that will validate with the public key.  
 
Key exchange algorithms like DH and the elliptic curve equivalent (ECDH) are usually the most               
appropriate way to negotiate a temporary (ephemeral) shared symmetric secret. Here, only the             
public keys are shared between the communicating parties and used (along with the local              
private keys) to compute a shared symmetric secret. ECUs use key exchange algorithms for              
efficiently encrypting any data communication. One caveat is that DH/ECDH are themselves            
insufficient to protect against an active Man-in-the-Middle (MitM) who can provide           
malicious/replacement public keys to each party. To resolve this, ECUs must validate the public              
keys as authentic by the use of a trusted third party or out-of-band channel. This is most often                  
accomplished by signing them with a trusted root Certificate Authority (CA) known to the device               
software or by pre-sharing public keys by, for example, embedding them in the firmware (itself               
validated by the Secure Boot process). 
 
Cryptographic hash functions are mathematical methods by which data can be compressed            
into a “fingerprint” or digest. Product engineers can think of the hash digest as a checksum of                 
sorts, but with additional cryptographic guarantees.  
 
A good cryptographic hash function must: 

● Not be reversible 
● Not reveal information about the input message  
● Be difficult to find collisions 
● Meet practical constraints such as performance 

 
Typical hash functions recommended for use are the SHA-2 family (SHA-256 and SHA-512)             
and the newer SHA-3. We do not recommend obsolete functions like MD5 and SHA-1 , as they                38

fail to meet all of the security objectives of a modern hash function. Hash functions are                
frequently used to provide integrity guarantees within protocols and during digital signature            
validations. 
 
A reliable source of entropy is vital for generating random numbers, but computers are              
designed to be deterministic and repeatable. This is a problem for cryptographic operations that              
require randomness for their mathematical security. When attackers can influence the selection            
of “random” values, it reduces the complexity for breaking cryptographic protection mechanisms,            
which underpin a variety of security mechanisms within the ECU. To solve this, most embedded               
microcontrollers and SoCs include a hardware entropy source, typically based on some form of              
analog noise, like a noisy diode, linear feedback shift register (LFSR), or ring oscillators. For the                

38 https://shattered.io/  
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best results, pair the hardware random number generator (HWRNG) with a cryptographically            
secure pseudo-random number generator (CSPRNG) or a hash function to remove bias and             
improve performance. Detailed guidance for the creation of random number sources is available             
elsewhere . 39

 
Certificates can be a complex topic, but at their most basic they consist of a cryptographic                
public key and an identity that are together cryptographically signed by some other key in order                
that the certificate’s integrity can be assured. Certificates frequently contain additional metadata,            
such as the issuer name, its intended purpose, issue and expiry dates, etc. The issuer creates a                 
certificate chain by having one certificate signed by another (and so on) that ends at the root                 
certificate or certificate authority (CA). Collectively, these concepts and the processes that            
surround them are sometimes referred to as a Public Key Infrastructure (PKI). This construct              
allows delegation of cryptographic authority to subordinate CAs, which may be a useful feature              
to satisfy some of the business constraints in the heavy truck supply chain. Here, an OEM (root                 
CA) may issue subordinate CA keys to Tier-1 suppliers so that they may produce ECUs for use                 
in the OEM vehicles. Scheduled refreshing of the subordinate CA and regular audits can limit               
abuse in the event of a supplier compromise. When attackers obtain access to private keys,               
they can assume the identity that the key represents to sign, encrypt, and decrypt data or                
software. Software supply chain attacks sometimes occur because there is insufficient access            
control, which may allow malware to be signed and distributed using the trusted certificates  . 40

 
Lightweight cryptography is specifically intended to operate on resource-constrained         41

embedded devices. This is not something generally intended for the automotive or IoT space,              
but for truly resource-constrained devices such as RFID tags. There is a contest to develop the                
standards, and at the time of this writing, no clear algorithm has been chosen as a winner. The                  
contest itself does not define the term “resource constrained,” and only gives high-level             
guidance as to what performance metrics will be measured. Any investigation into the             
applicability of lightweight cryptography needs to start with a careful study of the performance              
constraints of the ECU design in question. It bears noting that even the algorithms described in                
the previous sections (AES/ECC/SHA2) were specifically designed to be highly performant. As a             
general rule, a device with a processor running at 50MHz or higher with at least 256kB of RAM                  
should be more than capable of running common algorithms without the need for new and               
exotic cryptography. 
 
Threshold Cryptography is a construct that allows multiple parties to be involved in decryption              
of information. This can be used to mitigate a single point of failure. One common algorithm in                 

39 https://csrc.nist.gov/projects/random-bit-generation  
40 
https://csrc.nist.gov/CSRC/media/Projects/Supply-Chain-Risk-Management/documents/ssca/2017-winter/NCSC_Plac
emat.pdf 
41 https://csrc.nist.gov/projects/lightweight-cryptography  

 
© Copyright 2019 NCC Group  

 23  

 
 

https://csrc.nist.gov/projects/random-bit-generation
https://csrc.nist.gov/CSRC/media/Projects/Supply-Chain-Risk-Management/documents/ssca/2017-winter/NCSC_Placemat.pdf
https://csrc.nist.gov/CSRC/media/Projects/Supply-Chain-Risk-Management/documents/ssca/2017-winter/NCSC_Placemat.pdf
https://csrc.nist.gov/projects/lightweight-cryptography


 
 
this category is Shamir’s Secret Sharing (“M of N”), which allows a private key to be split                 42

among N parties in such a way that at least M need to participate in order to decrypt data. Any                    
group smaller than M does not reveal any secret information. Such mechanisms are strongly              
encouraged for critical key management functions, such as certificate authorities, where a            
disaster in one place (e.g., fire, flood, rogue employee) must not be allowed to prevent the                
ongoing system operation.  
 

Communication Security 
During provisioning, the communication channel between the provisioning systems and the           
ECU needs both confidentiality and integrity protection. This is commonly referred to as the              
security of the data-in-transit. The primary security properties of interest here are confidentiality             
and integrity (which includes replay-resistance). These can be satisfied by applying modern            
security protocols such as TLS 1.2 or later, which provides both. 
 
When everything is working correctly and the communication pathways are end-to-end           
protected, then anything outside the trust boundary can be ignored from a security modeling              
perspective. This allows the model of our system to be drawn rather simply as follows. 

  
Figure 4: End-to-End secure communications 

 
This will be true when all data passing through the intermediate systems is properly              
authenticated by the endpoints, thus eliminating the possibility of the data being compromised in              
transit. Note that the diagram assumes a single provisioning service entity, which may not be               
the case when delegating cryptographic authority to a subordinate provisioning service at the             
supplier. In this case, the view will be the same, but the provisioning service the ECU interacts                 
with will be either a) the supplier’s, not the OEM’s, or b) an appliance installed on-premises by                 
the OEM, which reports back to the master provisioning system at the OEM whenever network               
connectivity is available. 
 
Additional security properties of interest in all communication protocols include: 
 

● Replay attack resistance. Replay attacks involve re-issuing challenges, responses, or          
other packets. If the system cannot detect receiving duplicate messages, then an            
attacker need only intercept one valid message, and without bypassing confidentiality or            
integrity protections, can simply replay the message to cause the intended behavior.            

42 https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing  
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Typically resisting such an attack involves including a monotonically increasing counter           
or a random nonce within the envelope of the protocol where there is assurance of this                
value’s integrity. 

● Brute force mitigations. Allowing an attacker unlimited attempts at guessing the correct            
credentials can allow them to guess passwords and keys. Typical brute-force mitigations            
provide a time penalty for each invalid attempt to limit the rate at which guesses can be                 
made. To avoid penalizing legitimate activity (which can affect manufacturing yield), this            
penalty may only apply to invalid guesses after a certain threshold, such as 10 attempts. 

● Certificate pinning. Validation of the public key certificates used to communicate with            
external systems, like the back-end provisioning service, is necessary to determine           
authenticity and trust. This avoids active MitM attackers who attempt to subvert the             
communication channel by abusing the handshake and key exchange process.          
Certificate pinning is a method by which the expected certificate (or its root) is made               
known to the endpoint, by including it (or a hash of it) in the firmware for comparison.                 
The system can then reliably reject unexpected certificates. Caution should be taken to             
avoid pinning certificates that can expire before they can be replaced, as this has led to                
costly product recalls . Revoking (prematurely expiring) pinned certificates can be          43

similarly problematic, and caution and additional planning is warranted. 
● Side-channel attack resistance. Side channels are ways in which a computer system            

can leak information about a secret without intending to do so. This can be through any                
number of means, including error messages, timing information, or commonly Radio           
Frequency, Electro-Magnetic or power related signals. A classic timing side channel is            
when a timing-dependent comparison method is used to compare a secret like a             
password. An attacker able to measure the timing of the comparison may learn how              
many bytes of the secret are correct, which allows much faster brute forcing. Such              
attacks can be devastating when applied to retrieve a shared secret: the “break once,              
break everywhere” model significantly reduces effort for conducting widespread attacks.          
Mitigating timing side-channels involves the use of timing-invariant comparisons and          
masked computations when dealing with secret information. To mitigate more          
complicated cryptographic side-channels, the selection of an accepted cryptographic         
library is vital. Any cryptographic library that is well maintained and undergoes regular             
security assessments or research is likely to be a more reasonable choice than a              44

library that has not seen security updates for a prolonged period. Many commercially             
available libraries unfortunately fit into this later group. 

● Mutual-TLS (mTLS). mTLS is an extension to the more common TLS protocol that             
allows both ends to validate the authenticity of the other. If your back-end provisioning              
system needs to reject requests from non-legitimate devices, such as counterfeits, then            
this may be a viable protocol strategy. While mTLS is a common solution providing such               

43 https://blog.logitech.com/2017/11/09/update-will-replace-logitech-harmony-links/  
44 
https://www.nccgroup.trust/uk/our-research/technical-advisory-rohnp-key-extraction-side-channel-in-multiple-crypto-li
braries/  
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functionality, there are other protocol design options that provide similar mutual           
authentication capabilities. Take care when implementing mTLS to avoid endpoint          
certificates that expire. Should they expire prematurely while the device is unconnected            
and sitting in a warehouse, the results could be costly . 45

Storage Security Requirements 
After provisioning sensitive assets (e.g., secrets, keys, passwords, tokens, identities), they need            
to be protected (data-at-rest security). The main security properties of a robust storage system              
are integrity and confidentiality. 
 
In this section, we specifically exclude the portions of the persistent memory that are immutable.               
While such data may also be stored in a “filesystem” structure, they do not generally change at                 
runtime and should contain no sensitive secrets (beyond intellectual property). Thus, they can             
be better protected by other measures, such as write protection and the normal Secure Boot               
process (look for mechanisms such as dm-verity on Linux/Android). This implies the            46

requirement that the mutable and static portions of the filesystem are stored in separate              
partitions. 
 
The integrity protection of a secure filesystem needs to include more than mere checksums.              
Checksums and CRCs can handily detect accidental data corruption, however, these are            
trivially forged by a malicious actor, so stronger methods are needed. Use a keyed hash-based               
message authentication code (HMAC) using a hash from the SHA-2 family of functions in              47

place of a checksum to provide this integrity protection. HMAC is specifically difficult to misuse,               
and so is highly recommended; however, this does not provide confidentiality. 
 
An accepted solution to this problem is to use an authenticated encryption scheme, such as               
AES-GCM. This encrypts the data and also provides integrity protection such that modifications             
to the ciphertext can be accurately detected. The problem then shifts to managing the filesystem               
metadata and the filesystem encryption key. 
 
Additional properties of a secure storage system include: 
 

● Anti-rollback protection. As changes to the filesystem contents are made, the system            
evolves from one encrypted filesystem state to another. Both the old and new states are               
cryptographically valid, and so an attacker with direct access to the flash memory may              
simply revert the entire filesystem to the previous version without any need to bypass the               
encryption. This may allow the circumvention of higher level security features, such as             
data deletion, certificate expiry, or password attempt counters. To prevent this, a            
monotonically increasing counter needs to be implemented and stored outside the           

45 https://www.cepro.com/article/quirky_terribly_embarrassed_over_wink_home_automation_hub_recall  
46 https://www.kernel.org/doc/Documentation/device-mapper/verity.txt  
47 https://en.wikipedia.org/wiki/HMAC  
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filesystem. Compare the current value against the value stored in the encrypted            
filesystem to detect rollbacks. The Replay Protected Memory Block (RPMB) in           
eMMC/UFS flash devices is ideally suited to implementing monotonic counters. 

● A hardware root-of-trust is important to prevent a number of attacks against the             
storage system, such as memory replacement and memory swap attacks. Most often            
this root of trust takes the form of a cryptographic key stored within the hardware itself.                
Common implementations include keys stored in fuses or other OTP memory, or other             
hardware specific implementations. Where such hardware support does not exist, keys           
may be derived during initial system boot from a SRAM-based Physically Unclonable            
Functions (PUF) . 48

● Access control methods are most important when there is a degree of privilege             
separation in the software. It is unfortunately common that security assessments of            
embedded systems reveal that every application runs with system-level privileges. Not           
all processes should be able to access all data in the persistent memory. Where possible               
a mandatory access control system should be used (e.g., SELinux on the Linux and              49 50

Android operating systems). For capable microcontrollers and SoC-based devices, a          
Memory Management Unit (MMU) can be effectively used by the operating system to             
provide a great deal of hardware-enforced memory access protection . For simpler           51

ECUs, designed around less feature-rich microcontrollers and firmware that may have           
limited abilities to enforce privilege separation, some measure of access control may still             
be possible. The use of a memory protection unit (MPU) can restrict access to certain               
memory ranges on many simple microcontrollers. Careful use and segregation of data            
encryption keys between internal modules can limit the exposure of plaintext data            
between subsystems. 

 
A complete design of a secure filesystem is beyond the scope of this paper, but generally a                 
layered approach that is rooted in hardware is necessary: 
 

1. A hardware key is stored in OTP/Fuses, or some other immutable location within the              
microcontroller. This is only accessible to the cryptographic module, and is inaccessible            
through the hardware debug interfaces (JTAG/SWD). Often the chip supplier programs           
this key even before it is shipped from the foundry. 

2. The hardware key is then used to derive other keys as needed using appropriate key               
derivation algorithms (keys for provisioning and encrypting the RPMB block in the            
eMMC/UFS flash memory, for example). 

3. The RPMB block is limited in size but used to store persistent keystore root keys,               
monotonic counters, and other useful things. 

48 https://trust-hub.org/publications/P9.pdf  
49 https://en.wikipedia.org/wiki/Mandatory_access_control  
50 https://opensource.com/business/13/11/selinux-policy-guide 
51 https://crysp.uwaterloo.ca/courses/cs458/W14-lectures/Module3-3up.pdf 
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4. These keystore root keys protect an extensible keystore where all other keys are stored.              
The encrypted keystore can safely be stored in the regular filesystem due to it being               
encrypted (with an authenticated encryption mode) and protected from rollback using the            
monotonic counters. 

5. Individual files containing the provisioned data (e.g., keys, certificates, identities) are           
stored in the regular filesystem encrypted with the keys in the keystore. 

6. The regular filesystem and keystore both handle access control. 

Access Control Requirements 
Design strong access controls, as you would expect, to ensure only authorized identities are              
able to access a specific resource. In the context of a provisioning system, we are talking                
primarily about gating who can access the back-end system to obtain valid provisioning data,              
and gating who can connect to the embedded devices to access provisioning functionality or              
data. For such systems, passwords, especially fixed or shared, are not advisable. We strongly              
recommend a public-key based challenge-response protocol . In such a scheme, only the            52

corresponding public key of the authentication service (required for response validation) is            
stored inside the firmware image, and no persistent secrets are required. The corresponding             
private key should be suitably protected (in an HSM) on a back-end system that is itself                
access-controlled. As noted in the common mistakes section, there are existing implementations            
that include the private key within the tools that access the embedded system, however, these               
tools are deployed in an uncontrolled offline manner. Tools that exhibit this behavior are not               
suitable to avoid compromise of the private key. Only after authentication with the back-end              
system will the system respond to challenges and generate the correct response. 

Role Management 
Authorized agents will use the provisioning system to provision devices. They must be restricted              
from provisioning devices that they are not authorized to provision. If factory A is building device                
X, and factory B is building device Y, then factory A should not be capable of provisioning                 
device Y, and vice-versa. This is often accomplished by granting different levels of permissions              
and privileges and separate login credentials to each factory, production line, or provisioning             
agent. 
 
While role isolation and credential management is a clear solution here, implementation can be              
fraught when considering that many of the factory test stations (and the provisioning system is               
no exception) operate in a headless and autonomous manner without operator involvement. It             
may be tempting to embed the credentials in the software running on the provisioning test               
station, however, this leads to stolen software leaking the credentials. Stronger protection is             
needed, and this can be better accomplished with whitelisting on the back-end where the              
credentials are verified. Any abuse of credentials should be detected and investigated, as             
discussed in the following section.  

52 https://en.wikipedia.org/wiki/Challenge%E2%80%93response_authentication  
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Logging and Audit 
It is easy to overlook the importance of an audit trail when designing a system. While the use of                   
logging systems for simple failure analysis and fault diagnosis is somewhat obvious and more              
commonplace, these systems are highly useful in the detection and prevention of unauthorized             
or malicious activities. A well-implemented logging system that captures who accessed which            
system, when, why, how, and where, can reveal vital information to investigators during an              
incident response scenario. Knowing when and where devices were manufactured or repaired            
can help identify subversive rogue actors in your manufacturing supply chains that might be              
seeking to produce counterfeits or lower quality (and less secure) devices for use in your heavy                
truck ecosystem. Finally, a relatively small amount of automation effort up-front can leverage a              
logging system into a proactive detection and early warning system for such abuse, which can               
be useful to limit the overall cost of attackers in the shadow supply chains . 53

 
What you decide to log from your provisioning system will depend on the implementation, but at                
a high level should include all of the following: 
 

● User or agent identification 
● User location, a subjective measure of where they are located; can be physical address              

or site, IP address, or any other suitable proxy for location 
● Network addresses like TCP/IP and MAC addresses where available 
● Timestamp, as determined by a trusted source 
● Device identity (serial number, VIN, etc.) for any operations involving devices-under-test 
● Operation performed, commands issues to the device, etc. 
● Versions of software used on the device, test station, provisioning software, etc. as             

appropriate 
 

For completeness, we must state that some things in provisioning systems must NOT be              
logged, including passwords, credentials, keys, and anything else that is subject to            
confidentiality requirements. Log files by design frequently have fewer protections than these            
sensitive data items require. Leaking them through logs or other telemetry is a common mistake.  
 
For detection, analysis and automation should seek to identify baseline normal activity in the              
log, flagging anything out of the ordinary for investigation. The details of this analysis are               
beyond our discussion here. This functionality will depend highly on the provisioning            
environments of the specific devices in question, and the ability to correlate this data with other                
sources, such as purchasing and business-to-business systems. Many of the abusive patterns            
that have been seen historically and that can still be expected are summarized in detail in                
previous NCC Group publications . Some of the more important ones for a provisioning system             54

are: 

53 https://www.chipestimate.com/The-Shadow-Supply-Chain/blogs/484  
54 https://www.nccgroup.trust/uk/our-research/secure-device-manufacturing-supply-chain-security-resilience/  
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● Device activation data mismatched with manufacturing records 
● Cloned device identifiers (such as devices appearing in multiple places simultaneously)  
● Provisioning system credentials used from an incorrect site or station type 
● Inexplicably high volume provisioning from a single provisioning station 
● Unexpected activity during quiet times like weekends or holidays 

Key Management 
At its heart, a provisioning system like that discussed in this document is just a key management                 
system. Strong key management involves the entire lifecycle of a key, token, or authenticator,              
from generation, storage, transport, revocation, and destruction.  

Key Generation 
Cryptographic key generation is an important first step in any crypto system. A guessable key               
provides very little security benefits. To this end, keys should be generated using only              
appropriate algorithms and leveraging only true random entropy sources. Key derivation           
functions (KDF) are used to convert the initial keying material into a strong key suitable for the                 
cryptographic algorithm which will use the key. These can be very useful when you need to                
generate a key from a password, or otherwise generate a key in a repeatable way (for example,                 
see the discussion regarding RPMB provisioning in the Storage Security Requirements section            
above). 
 
Key sizes should be selected based on the performance required and the lifetime of protection               
desired. This can be tricky in heavy vehicles where legacy hardware dominates the market. For               
new systems (i.e., 2019 and beyond), choosing key sizes is practically quite simple: use the               
biggest that is supported by your platform for the chosen algorithm. This is because, with               
modern algorithms, any of the key sizes shown in the table below are practically fine for the life                  
of a truck (barring major quantum breakthroughs). Regardless, choosing the correct algorithms            
is at least as important as choosing a key size . NIST guidelines for keys size and protection                 55 56

equivalents are as follows (note that smaller key sizes than those listed here are explicitly               
considered too weak to mention): 
 

AES Key Size 
(bits) 

RSA Key Size 
(bits) 

ECC Key Size 
(bits) 

128 3072 256 

192 7680 384 

256 15360 512 

Table 1. Equivalent key sizes across different cryptographic algorithms 
 

55 https://paragonie.com/blog/2019/03/definitive-2019-guide-cryptographic-key-sizes-and-algorithm-recommendations 
56 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt1r4.pdf 
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Keys should be unique to each device, and devices should not share keys. As noted previously,                
there is a greater risk when attackers compromise shared keys. 
 
Generate keys only within a trusted system where attackers cannot compromise keys before             
use. Generally, this means generating them within: 
 

a) Embedded devices that will use them, and securely exporting the public key encrypted             
with the provisioning system’s public key 

b) A back-end system and securely transporting them to the embedded device 
Because securing the communication path during provisioning can be a challenge, and has a              
prerequisite for key generation anyway, the first method is often preferred. Note that with RSA,               
key generation is particularly slow, which implies the need for the second solution, or preferably               
just avoiding RSA altogether . 57

Key Storage 
There are at least two storage locations of interest: on the embedded device where individual               
device secrets are provisioned; and on the back-end, where master secrets need to be stored               
and used safely.  
 
On the embedded device, there are several options for secure storage. Modern devices will              
typically store sensitive data in a secure filesystem implementation, which protects the data             
using a layer of cryptography providing confidentiality and integrity guarantees. It should also             
prevent replay/rollback attacks directly against the flash memory itself. The filesystem           
protections will be multi-layered and based on a hardware backed cryptographic key that is              
unique per device, and this key is typically stored in fuses on the main processor, ideally                
provisioned in the foundry. It should only be accessible to the cryptographic modules leveraging              
it. The ECU must protect cryptographic secrets from compromise by hardware debug interfaces             
like JTAG and SWD. 
 
The SAE J3101 described Hardware Protected Security Environment (HPSE), and the Android            58

Keystore  are both robust solutions to this problem. 59

 
Alternate implementations of hardware-backed key storage include TPM sealed storage ,          60

external EEPROMs, Secure Elements and other external security coprocessors. Such          61

implementations are most frequently prescribed by the suppliers of these solutions. These are             
difficult to integrate securely on their own without enabling low-cost circuit-level attacks , and so              62

57 https://blog.trailofbits.com/2019/07/08/f/  
58 https://www.sae.org/standards/content/j3101/ (paywalled) 
59 https://source.android.com/security/keystore  
60 https://en.wikipedia.org/wiki/Sealed_storage  
61 https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf  
62 
https://www.nccgroup.trust/us/our-research/tpm-genie-interposer-attacks-against-the-trusted-platform-module-serial-b
us/  
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take additional care when physical attacks are within the ECU’s threat model. Protecting the              
communication path between the coprocessor and the host microcontroller requires careful           
design and manufacturing considerations to bootstrap the trust relationship between those two            
components. Furthermore, many of these solutions suffer from the confused deputy problem,            
where the coprocessor cannot authenticate the service running on the host processor, and so a               
compromised host can simply ask the coprocessor to use its privileges on behalf of the attacker. 
 
On the back-end, protection of master secrets is crucial. Here, businesses should implement a              
robust HSM-based process (discussed further in the Key Ceremonies section below). 

Key Transport 
During communication with the embedded device, it is important for the data path to be               
protected for both integrity and confidentiality. 
 
In the factory, an attacker’s malware that is running on a factory test station should not be able                  
to compromise the provisioned data. Securing this data path against an active MitM is relatively               
straightforward using TLS and certificate-pinning. Additional protection for the last-mile to the            
device can be implemented if the SoC has a pre-provisioned unique secret from the chip               
supplier.  
 
In the field, when re-provisioning keys or secrets, use the same general mechanisms. Ensure              
that these mechanisms support external users so that their right-to-repair is not adversely             
impacted. 
 

Key Revocation 
Key and certificate revocation is a hard problem when dealing with difficult-to-update embedded             
devices. If a master secret is compromised, then informing all deployed devices and systems to               
no longer use or trust that secret can be difficult, especially when not all devices are online all of                   
the time. Furthermore, embedded devices frequently lack a reliable and secure time source,             
which is often the trigger for automatic expiry.  
 
We recommend mitigating the challenges by segregating product families and rotating these            
master secrets when new products are introduced. Should an older, less security-robust product             
be compromised, then this segregation will prevent that from affecting newer devices. 
 
ECUs should use a counter for key and certificate expiry, based on the number of times the                 
ECU has connected to some external trusted system. Without an independent tamper-resistant            
time source (such as GPS), this will be a far more reliable metric. 
  
Planned obsolescence can be a problem when talking about embedded devices installed in             
heavy trucks with multi-decade lifespans. For this reason, certificates that expire are not a              
recommended implementation unless the provisioning service can guarantee replacement.         
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Certificates that expire while devices sit in a warehouse or while they are unconnected in the                
field can lead to costly denial-of-service and product recalls. 
 
A related but separate issue is when the algorithm itself becomes obsolete within the lifespan of                
the vehicle. This would typically be a result of a new cryptanalysis breakthrough. Replacement              
of the affected firmware is the ideal solution, however, this may not always be practical or cost                 
effective at-scale. Depending on the severity of the weakness discovered, it may be possible to               
buy time by increasing the cadence with which the keys are revoked and replaced rather than                
the entire algorithm. Fortunately, the pace of attack evolution against modern cryptographic            
algorithms is relatively slow, and the weaknesses are revealed many years before practical             
attacks are available, which allows for advanced planning. 

Key Destruction 
When businesses no longer need secrets, take care to ensure that compromise does not occur.               
This is because they may still be useful to an attacker to abuse legacy systems. A secure                 
destruction process must be implemented. 
 
NIST and other formal guidelines for data destruction can be followed, but general rules can               63 64

be used as well: 
 

● When ephemeral secrets are not needed anymore, destroy them at the earliest            
opportunity. Overwrite them in RAM or erase from flash as the case dictates.  

● For long-term secrets the same advice applies, but also consider unintended copies            
created by underlying storage systems, such as wear-leveling and garbage collection           
routines in the underlying software layers. 

● Any stored copies in back-end system databases may also need to be purged. Do not               
forget about system backups.  

● Secure scrap processes in manufacturing and refurbishment facilities are important to           
prevent credentials from scrapped devices from being reused on new or counterfeit            
devices. Device scrap processes should track devices using strong identities and not            
merely tracked by weight. Businesses should enhance their scrap processes to limit the             
number of devices/components/secrets/identities that funnel into grey market supply         
chains.  

● Blacklisting of expired and scrapped credentials can prevent reuse. Businesses can also            
use these to flag stolen devices and is a valuable data set in the audit process.  

Key Ceremonies 
While much of the day-to-day operation of a provisioning system is automated with the              
appropriate software handling the business logic, the most fundamental aspects, such as            
bringing the system online and generating master secrets, will still involve human            

63 https://www.nist.gov/publications/nist-special-publication-800-88-revision-1-guidelines-media-sanitization  
64 https://www.ncsc.gov.uk/guidance/secure-sanitisation-storage-media  
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administrators. To keep these administrators honest and limit insider abuse, clearly defined            
processes, or ceremonies, must be followed to minimize risk and to create audit trails. 
 
Insider abuse can occur when authorized individuals or employees act against the security of              
the system. When managing back-end HSM systems, businesses need strong guarantees           
because of the high importance of the master secrets. Multi-party authentication and strong             
audit processes should be a part of any key management plan. The number of administrators               
that must be involved in the ceremony will depend on the importance of the system. We strongly                 
recommend at least two administrators for a heavy truck provisioning system.  
 
Note that transparency is often a requirement of such ceremonies, and thus there are many               
publicly published examples . Following the guidance of the HSM supplier is preferred when             65

implementing these ceremonies. For a relatively closed ecosystem such as that implemented by             
the heavy truck industry, this level of transparency many not be required, however internal              
compliance audits will still be important. 
 

Solution Practicalities 
Tying all of the above requirements together, we present an example provisioning system as              
shown in the diagram below. Even in this simplified view, we can start to see some of the                  
complexity involved: 
 

● During manufacturing, ECUs with some appropriate firmware will connect to a host test             
station over a local physical interface (e.g., typically serial, USB, or CAN). 

● The ECUs themselves, will run only cryptographically signed firmware to ensure the            
integrity of the process. The process of bootstrapping of this Secure Boot process (i.e.              
enabling it) must be carefully choreographed between the chip supplier and the OEM             
factory. 

● The test station will run some software designed to orchestrate the manufacturing test             
and provisioning sequences. Through the physical connection, it will issue commands to            
the ECU. 

● The test station will, as needed, download provisioning data from, and upload test logs              
and other data to services that are exposed on the factory network.  

● One of these factory test services is the provisioning service. It is responsible for              
provisioning services: providing device identifiers, collecting or distributing cryptographic         
keys and certificates, and authenticating factory test stations and users. The provisioning            
service may be located on-premises at each factory, or may be centralized and remote              
at the OEM. When an ECU supplier sells to multiple OEMs, this may be further               
complicated by the interoperability requirements of each OEM’s provisioning system. 

65 https://www.iana.org/dnssec/ceremonies/22  
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● When on-premises, the provisioning appliance is hardened against physical attacks and           
is designed to operate only with periodic contact with the master provisioning service in              
the back-end. 

● Behind the master provisioning service, strong key management systems are in place,            
based around an HSM that protects against compromise or misuse of the sensitive key              
material. 

● Master secrets, like firmware signing keys, and certificate signing keys should be rotated             
for each new product or product family to hedge against compromise and to limit cross               
compatibility issues. 

● Robust analytics should be used to monitor the baseline activity of the provisioning             
system and detect anomalies that might indicate abuse of the system. 

 
Figure 5: Example provisioning system architecture 

Buy vs Build 
References in the footnotes of this section are intended only to give a flavor of some of the commercial                   
offerings that are available. Omissions or inclusions here are purely coincidental and do not constitute an                
endorsement by either the NMFTA or NCC Group.  
 
Like any other part of the vehicle system, a buy-vs-build decision needs to be made by the                 
business. NCC Group cannot make a full comparison of these options purely from the generic               
perspective taken in this paper. The weighing of options will be highly dependent on the design                
and implementation of existing ECUs and their manufacturing systems, and on the business             
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logic systems and processes that govern the vehicle ecosystem. All of this will differ from one                
OEM/supplier to another. 
 
Building yourself might take slightly longer and involve more engineering effort, but it allows the               
solution to be highly tailored to the specific environment, vehicle ecosystem, and business             
processes as needed. When issues arise, or extensions and new features are desired, owning              
the system design, implementation, and deployment allows quick reactions to changing           
requirements and circumstances. This option depends on having the available resources to            
competently turn the requirements laid out here into a reality, and to operationalize such an               
infrastructure across the vehicle ecosystem. 
 
Conversely, there are commercial entities offering provisioning solutions, or portions thereof,           
that can help satisfy the provisioning needs. Purchasing a system or service can get the ECU                
and vehicle to market much faster, and maybe even at a lower initial per-ECU price point. Most                 
major cloud providers offer provisioning solutions to enroll and onboard devices into their IoT              
platforms , , . If the vehicle systems are already using services from these cloud providers,             66 67 68

then these might be a logical part of the solution. Integration into the manufacturing environment               
may vary. To aid with this portion of the puzzle, many contract manufacturing partners offer               
value-added services to support device provisioning , and may have existing options for            69

integrating with both cloud services and devices. On the device-side, many chip suppliers offer              
solutions within their Board Support Packages (BSP) on which to build secure provisioning             
systems , . Furthermore, many chip resellers and suppliers have value-added services for           70 71

pre-provisioning devices before they get to manufacturing . Component pre-programming can          72

be an important aspect to protect the “last mile” of the provisioning data path when the                
manufacturing environment itself is untrusted. Finally other suppliers exist that offer more or less              
complete solutions that are independent of manufacturing, component, and cloud providers , ,          73 74

, , , , .  75 76 77 78 79

 
Hybrid options of course exist, and are likely to be the most practical alternative. Most               
commercial solutions will fall short in some respects. Interoperability requirements with third            
party systems may dictate certain portions of the overall design. Solutions architects will need to               

66 Microsoft IoT Hub Device Provisioning Service: https://docs.microsoft.com/en-us/azure/iot-dps/concepts-security  
67 AWS IoT Device Provisioning: https://docs.aws.amazon.com/iot/latest/developerguide/iot-provision.html  
68 Zero touch device provisioning Google Cloud IoT Core: https://cloud.google.com/iot-core/  
69 https://www.arrow.com/en/research-and-events/articles/arrow-emea-nxp-secure-provisioning  
70 Infineon Secured Provisioning Services  
71 https://www.digikey.com/en/articles/techzone/2017/mar/efficient-and-secure-provisioning-for-the-iiot  
72 http://www.dataio.com/Technology/Sentrix  
73 https://www.deviceauthority.com/solutions/device-registration-onboarding-and-provisioning  
74 https://www.insidesecure.com/Products/Flexible-Provisioning-Solutions/Device-Provisioning 
75 https://www.certicom.com/content/certicom/en/products-and-services/asset-management-system.html 
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create or customize glue logic for integration between systems. The complexities of the vehicle              
ecosystem demand a complex provisioning system. Above all, if you are purchasing a system in               
whole or in part, then you need to ask the hard questions of the suppliers, and determine if they                   
are correctly implementing all of the requirements. 
 

Summary 
A secure provisioning system is vital for securing ECUs in the face of modern and emerging                
threat models. The heavy trucking industry will achieve this by the application of strong              
cryptographic protections and key management processes. Applying these long-established         
security concepts to heavy trucking applications can be challenging due to the complex             
distributed ecosystem, manufacturing practicalities, long lifespan of the vehicles, and the           
remoteness in which they are sometimes required to operate. The security properties of any              
system should account for the protection of data-at-rest, data-in-transit, access controls, and            
more. By following the requirements laid out in this paper, the heavy trucking industry can build,                
integrate, or acquire a robust provisioning system that can support the desired security             
guarantees of the vehicle system, throughout the lifetime of the vehicle. A provisioning system is               
by no means sufficient to fully secure the ECUs and vehicle, however they provide a strong                
foundation on which a secure vehicle system can be built. 
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Glossary of Acronyms 
 

AES: Advanced Encryption Standard. 
AI: Artificial Intelligence. 
AV: Automated Vehicles. 
BCM: Body Control Module. 
CA: Certificate Authority. 
CAN Bus : Controller Area Network. 
CSPRNG: Cryptographically Secure Random Number 
Generator. 
DES/3DES : Data Encryption Standard. 
DH: Diffie-Hellman (key exchange protocol). 
DoS: Denial of Service. 
ECB: Electronic Codebook (cipher mode). 
ECC: Elliptic Curve Cryptography. 
ECDH: Elliptic Curve DH. 
ECU: Electronic Control Unit. 
EEPROM: Electrically Erasable Programmable ROM. 
eMMC : embedded Multimedia Card 
FFA: Fault and Failure Analysis. 
FOTA: Firmware Over-the-Air. 
GCM: Galois Counter Mode (cipher mode). 
GDPR: General Data Protection Regulation. 
GPS: Global Positioning System. 
HPSE: Hardware Protected Security Environment. 
HSM: Hardware Security Module. 
HWRNG: Hardware Random Number Generator. 
IMEI: International Mobile Equipment Identity. 
IoT: Internet of Things 
ITS: Intelligent Transport System. 
JTAG : Joint Test Action Group (hardware debug interface). 
LFSR: Linear Feedback Shift Register. 
MAC address : Media Access Control address 
MD5 : Message Digest Algorithm. 
MitM: Man-in-the-Middle. 

ML: Machine Learning. 
MMU: Memory Management Unit. 
MPU: Memory Protection Unit. 
mTLS: Mutual TLS. 
NIST: National Institute of Standards and Technology. 
OBD2: On-Board diagnostics. 
OCD: On-Chip Debugger. 
OEM: Original Equipment Manufacturer. 
OTP: One-time Programmable. 
PCM: Powertrain Control Module. 
PKI: Public Key Infrastructure. 
PTO: Power Take Off. 
PUF: Physically Unclonable Function. 
RC4: Rivest Cipher. 
RMA: Return Materials Authorization. 
ROM: Read-Only Memory. 
RPMB: Replay Protected Memory Block. 
RSA: Rivest–Shamir–Adleman (cryptosystem). 
SHA: Secure Hash Algorithm. 
SKU: Stock Keeping Unit. 
SoC: System on Chip. 
SSL: Secure Sockets Layer. 
SWD: Single Wire Debug. 
TCP/IP: Transmission Control Protocol/Internet Protocol. 
TCU: Telematics Control Unit. 
TLS: Transport LEvel Security. 
UART: Universal Asynchronous Receiver/Transmitter. 
UFS: Universal Flash Storage. 
USB: Universal Serial Bus. 
V2I: Vehicle-to-Infrastructure (communication technology). 
V2V: Vehicle-to-Vehicle (communication technology). 
V2X: Vehicle-to-X (collective term for V2V and V2I). 
VIN: Vehicle Identification Number. 
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