
Ultimate Truck Hacking Platform

Unifying Truck Hacking Tools with the Power of Yocto Linux and BeagleBone Hardware

Dr. Jeremy Daily, Associate Professor of Systems Engineering

Rik Chatterjee, Graduate Student in Systems Engineering

Carson Green, Undergraduate in Electrical and Computer Engineering

What is the UTHP ?

A Tool Revolutionizing Vehicle

Diagnostics and Security:

➢ Unified Solution: Combining diverse truck hacking

tools under one platform for seamless diagnostics

and cybersecurity analysis.

➢ Yocto-based: Harnessing the flexibility of Yocto

Linux to ensure adaptability and wide-ranging

compatibility.

➢ Hardware Meets Software: Introducing a

specialized BeagleBone based hardware designed

to work hand-in-glove with our software build.

➢ Future-Proof: Regular kernel updates and platform

porting to stay ahead in the fast-evolving world of

vehicle technology.
Yocto

Build
Hardware Tools

Why do we need a new Platform ?
● Enhanced Vehicle Security: As trucks become more technologically advanced, the need for comprehensive security diagnostics increases. UTHP

offers an all-in-one solution to identify vulnerabilities and potential threats.

● Unified Toolset: Currently, professionals and enthusiasts must juggle various tools for different diagnostic tasks. UTHP offers a centralized platform,

reducing the learning curve and increasing efficiency.

● Future of Transportation: With the rise of autonomous vehicles and smart transportation, it's crucial to stay ahead of potential cyber threats. UTHP

provides a foundation for future-proofing our vehicles.
To prevent something like this due to a cyberattack

CyberTruck Challenge

Experience to guide in the design decisions and goals.

Participants

• Students

• Industry

• Instructors

• Mentors

Sponsors have access to

some outstanding new

talent in cybersecurity.

What’s it like?

What’s it like?

Ultimate Truck Hacking Platform

Brings together useful hardware, tools, and operating systems for a complete, low-cost system for education, training, research and

assessments for cybersecurity of heavy vehicles across multiple networking layers in the system.

Truck Networks

Application Layer

Network Layer

Data Link / Transport Layer

Physical Layer / CAN

J1939 Message

J1939 PDU

CAN Frame

ECU

ECU

ECU

ECU

ECU

Gateway

Cybersecurity Threats in Commercial

Vehicles

Application Layer

Network Layer

Data Link / Transport Layer

Physical Layer / CAN

Cybersecurity Threats in Commercial

Vehicles

Application Layer

Network Layer

Data Link / Transport Layer

Physical Layer / CAN

Cybersecurity Threats in Commercial

Vehicles

Application Layer

Network Layer

Data Link / Transport Layer

Physical Layer / CAN

Yocto Build Hardware Tools

What is Yocto ?

➢ Definition: Yocto is a collaborative project that provides

templates, tools, and methods to create custom Linux-based

systems for embedded products.

➢ OpenEmbedded Build System: Utilizes the OpenEmbedded

build framework, which comprises a collection of "recipes"

detailing how software components are compiled and

integrated.

➢ Layered Approach: Organizes functionalities in layers,

allowing for better modularity and separation of concerns.

➢ Not Just Another Distribution: Yocto isn't a Linux

distribution itself but a toolkit to develop distributions

tailored for specific needs.

➢ Backed by the Linux Foundation: Ensuring consistent

development and maintenance backed by industry

professionals.

YOCTO

PROJECT

Open source project

the builds and

maintains tools and

components

associated with

embedded linux

POKY

Yocto

Project

Reference

Embedded

Distribution

Open source

Build Engine and

Yocto compatible

metadata for

embedded linux

OPEN

EMBEDDED

Why Choose Yocto ?
➢ Customized Linux Systems: Yocto crafts a tailor-made OS, optimized for specific needs and hardware architectures.

➢ Layer Model: Yocto's flexible layering system, allows developers to add or remove functionalities as needed.

➢ Rich Ecosystem: A vast network of available layers and configurations on the net accelerates development, especially with layers designed by

board founders and manufacturers.

➢ Complete Granularity: Beyond just generating full system images, Yocto offers granularity in generating bootloader, kernel, filesystem, and

toolchain, ensuring every component is precisely as intended.

➢ Learning Curve vs. Flexibility: While Yocto has a steeper learning curve, its power and flexibility are unparalleled. When a project requires in-depth

customization, particularly for embedded systems aiming for efficiency, Yocto is often the optimal choice.

➢ Comparative Advantage: Compared to desktop distributions, Yocto is more tailored for specific product goals, especially when lightness, speed,

and ultra-customization are priorities. While Buildroot offers simplicity, Yocto provides a broader spectrum of packages and capabilities.

DESKTOP

DISTRIBUTION
BUILDROOT YOCTO

GENERAL

PURPOSE

EASY TO USE

TAILORED

HIGH

LEARNING

CURVE

Building with Yocto for UTHP

• Install Essential Packages: Tools and dependencies for Yocto.

• Clone Poky Repository: The heart of the Yocto Project.

• Navigate to Poky Directory: View and choose the relevant

branch.

• Checkout 'kirkstone' Branch: The designated release for our

project.

• Initialize Build Environment: Using oe-init-build-env within the

'poky' directory.

• Review & Modify 'local.conf': Adapt configurations to your

project needs.

• Execute BitBake: Kickstarts the entire build process.

• Monitor Build Progress: Track the construction of your custom

Linux distribution.

• Flash the image to the Beaglebone: Use ‘dd’ or and other tool.

Prepare the Host System for Yocto

Prepare the Host System for

Kernel Development

Make changes to Kernel source

files

Build the Image

Make Kernel Configuration

changes

Building with Yocto for UTHP

https://github.c

om/SystemsCy

ber/UTHP

https://github.com/SystemsCyber/UTHP
https://github.com/SystemsCyber/UTHP
https://github.com/SystemsCyber/UTHP

The Yocto Built:

Is It Complete ?

Customizing the build: Recipes & Layers
➢ Recipes:

○ Individual instructions for building software components.

○ Specify source location, dependencies, and installation procedure.

➢ Layers:

○ Collections of related recipes and configurations.

○ Provide structure and modularity to the build process.

➢ Importance:

○ Easily add or remove software components.

○ Separate customizations or configurations.

○ Maintain third-party software, hardware adaptations, or proprietary

software.

BASE LAYER (POKY)

META-UI

META-USER

META-UTHP

META-CAN

META-NETWORKING LAYER

BOARD SUPPORT PACKAGE (BSP) LAYER

Customizing the build: Adding CAN

➢ Kernel Recipe Append Creation:

○ Create an append recipe specific for CAN: linux-

yocto_5.15-can.bbappend.

➢ Specify Custom Configuration:

○ Add configurations in a separate can-support.cfg.

■ CONFIG_CAN=y

■ CONFIG_CAN_RAW=y

■ CONFIG_CAN_BCM=y

➢ Update Kernel Append Recipe for CAN:

○ Extend SRC_URI to include can-support.cfg.

➢ Integrate CAN-Utils:

○ Update image recipe: to include “can-utils”

Customizing the build: USB ETHERNET
➢ Kernel Recipe Append Creation:

○ Name: linux-yocto_5.15-usb.bbappend.

○ Purpose: Enable USB gadget features.

➢ Specify Custom Configuration:

○ Configuration Details:

■ CONFIG_USB_ETH=y

■ CONFIG_USB_G_NCM=m

■ CONFIG_USB_MASS_STORAGE=y

➢ Update Kernel Append Recipe:

○ Extend SRC_URI to include usb.cfg.

➢ Network Configuration:

○ Define static IP for USB Ethernet.

○ Update /etc/systemd/network/usb0.network on BeagleBone’s root filesystem.

➢ Host Configuration:

○ Manually set IP for the new network connection.

Customizing the build: Adding J1939

➢ Kernel Recipe Append Creation:

○ Create a J1939 specific append:

■ linux-yocto_5.15-j1939.bbappend.

➢ Specify Custom Configuration:

○ Define in j1939-support.cfg.

■ CONFIG_CAN_J1939=y

➢ Update Kernel Append Recipe for J1939:

○ Extend SRC_URI to include j1939-support.cfg.

Current Status
➢ USB Ethernet Integration:

○ Kernel Configuration: Successfully added and

enabled.

○ Image Recipe: usbinit integrated.

○ Connectivity: Confirmed stable USB Ethernet

connection via SSH.

➢ CAN Protocol Integration:

○ Kernel Configuration: CAN support enabled.

○ Image Recipe: can-utils integrated and

functioning.

○ Communication: Successful test transmission and

reception on CAN bus.

➢ J1939 Protocol Integration:

○ Kernel Configuration: J1939 support enabled.

○ Image Recipe: J1939 utilities and tools integrated.

○ Protocol Testing: Successful J1939 communication

verified.

Yocto Build Hardware Tools

Truck Networks

Hardware Overview

CAN

LIN

PLC
Safe Power-

down

Connectors
Real-time

Clock

Logic

Analyzer

Circuit

Protections

BeagleBone

Black

BeagleBone Black

➢ It’s better than a Raspberry Pi for our

application

➢ SBC for embedded systems and projects

➢ Specs: 1GHz ARM Cortex-A8, 512MB RAM,

4GB eMMC

○ Two CAN controllers inside

○ Two programmable real-time units (PRU)

○ Ample I/O (92 GPIO pins)

➢ Affordable, versatile, onboard storage,

community support

➢ Used, verified, and tested in previous designs

UTHP PCB

Left: 3D view of the PCB layout
showing component locations,
beaglebone placement, and
connector configurations.

Right: PCB layout of components.

NOTE: Designs shown are
preliminary and are subject to
change. The images seen are
current as of October 19, 2023.

Controller Area Network (CAN)
➢ Requirement: J1939 supported

➢ The UTHP contains:

○ (4x) MCP2562FD CAN Transceivers

○ (2x) MCP2518FD CAN Controllers with external oscillator

○ (2x) 120 Ohm terminating resistor enable / disable switches

➢ Added 2 extra CAN interfaces to the BeagleBone

➢ Multiple connector interfaces

Controller Transceivers

CAN Schematics
Left: MCP2518 CAN controller
with a 40 MHz external oscillator,
decoupling capacitors, and
connections to the MCP2562FD
CAN transceiver.

Bottom Left: MCP2562
transceiver circuit with decoupling
capacitor.

Bottom Right: Single-pole single-

throw switch allowing for enabling

or disabling the 120 ohm

terminating resistor.

Local Interconnect Network (LIN)

➢ Requirement: J1708/J1587 supported

➢ LIN implementation uses the MCP2003B chip

○ Stand-alone transceiver

○ Transient protection capacitors
The picture can't be displayed.

Power Line Communication (PLC)

➢ 1st Option: Intellon SSC P485

○ 20-pin spread-spectrum carrier transceiver IC

○ Not in production, but able to purchase and

documentation still available

○ Needs additional design work + hardware to

implement

○ Cheapest option available

➢ Build breakout board to test

➢ PLC4TRUCKS resources

○ https://github.com/TruckHacking/plc4trucksduck

○ https://nmfta.org/wp-

content/media/2022/11/Power_Line_Truck_Hacking

_2TOOLS4PLC4TRUCKS.pdf

Above: Intellon SSC P485 typical
application for PLC connection.
Block diagram shows
microcontroller, SSC P485
transceiver, filtering and signal
conditioning, and coupler.

Right: Pinout of the 20-pin Intellon
SSC P485.

Images from source:
https://datasheetspdf.com/pdf-
file/476676/ETC/P485/

https://github.com/TruckHacking/plc4trucksduck
https://nmfta.org/wp-content/media/2022/11/Power_Line_Truck_Hacking_2TOOLS4PLC4TRUCKS.pdf
https://nmfta.org/wp-content/media/2022/11/Power_Line_Truck_Hacking_2TOOLS4PLC4TRUCKS.pdf
https://nmfta.org/wp-content/media/2022/11/Power_Line_Truck_Hacking_2TOOLS4PLC4TRUCKS.pdf
https://datasheetspdf.com/pdf-file/476676/ETC/P485/
https://datasheetspdf.com/pdf-file/476676/ETC/P485/

Power Line Communication (PLC)

➢ 2nd Option: Semitech SM2400 PLC Module

○ Plug - N’ - Play : 4 pin connector

○ UART interface

○ Optional SPI / RS485 interfaces

○ Need to perform testing to compare against the

Intellon SSC P485

○ Application notes, reference designs and

software available as resources from the

manufacturer

○ Not cost-friendly at ~$100 per unit

https://semitechsemi.com/wp-content/uploads/2022/10/PB-Semitech-PLC4TRUCKS-5_0.pdf

https://semitechsemi.com/wp-content/uploads/2022/10/PB-Semitech-PLC4TRUCKS-5_0.pdf

Power Line Communication (PLC)
➢ 3rd Option: Build our own “transceiver”

○ Design process and schematic shown below

■ Only able to perform amplitude shift keying (preamble), but not phase-shift keying

○ Using a filter: resonant frequency, Q-factor, and gain equations give component values

Left: Active band-pass filter design
with corresponding equations from
https://www.electronics-
tutorials.ws/filter/filter_7.html.

https://www.electronics-tutorials.ws/filter/filter_7.html
https://www.electronics-tutorials.ws/filter/filter_7.html

J1708 / J1587
➢ Requirement: J1708 / J1587 supported

➢ Combination of inverters, resistors and transceiver capable of handling J1708 traffic

○ THVD1410DR transceiver has built-in ESD protection, low power consumption, bus failsafes and noise rejection

➢ Two J1708 / J1587 circuits

○ Seen below with decoupling capacitor

○ Connected to multiple output connectors

Real-Time Clock + Security Chip

ATECC608A Security Module MCP7940N Real Time Clock (RTC)

I2C communication I2C communication

Secure boot support Hours, Minutes, Seconds, Day of Week, Day, Month and Year

Hardware-based key storage Battery-powered time keeping

Educational feature Low-power

Future work of number generation Timestamp when switching to battery

https://www.microchip.com/en-us/product/mcp7940nhttps://www.microchip.com/en-us/product/atecc608a

Safe Power-Down

➢ BeagleBone would often come unplugged from power / USB

➢ Led to issues with OS image - would become corrupted

○ Led to non-operational state for BeagleBone

○ Have to re-flash SD card and BeagleBone

○ If corruption happened enough times, BeagleBone doesn’t work anymore

➢ Need a way to maintain power for short period after power loss and shut down properly

https://learn.adafruit.com/li-ion-and-lipoly-batteries/voltages https://www.digikey.com/en/products/detail/coolgear/CG-30SL1AC-1M/16384571

?

Safe Power-Down

➢ Found BeagleBone “test points” for battery > connected large capacitor (5F) to store charge > developed script

Above: Circuit schematic containing capacitor
for BeagleBone safe power-down.

The picture can't be displayed.

Above: Supercapacitor circuit addition
close-up view on TruckCape V4. The
circuit contains a 5F capacitor, 10k
resistor, and a small board used for
connecting components.

Right: TruckCape V4 board design
showing scale of supercapacitor
addition to the device.

Safe Power-Down
➢ Created a service:

○ OS runs the service in the background

○ Polling register on the power-management chip

onboard the BeagleBone

■ TPS65217C chip, status being read over

I2C

■ Register 0x24

■ Status 0x80 shows power has switched to

“battery” (supercapacitor)

➢ If 0x80 is seen, run the command “shutdown -h

now”

○ This turns of the BeagleBone properly, without

corrupting the image

➢ Tested in the lab and on our research truck

○ Success!

Connectors
➢ Banana jacks coming soon

○ Externally accessible

○ CAN, LIN, J1708

○ 3.3V, 5V, 12V, GND

➢ Deutsch 9

○ Custom cable connected to

UTHP via Molex 10-position

header

➢ PWM connector

○ Output signals with

configurable duty cycles

○ Sensor simulation, driving

external circuitry, etc…

Right: MikroeClick connector
interface allowing for modular
additions to the UTHP.

Above: Double-stacked DSUB-25 connector.

https://www.mikroe.com/mikrobus

https://www.digikey.com/en/products/detail/assman

n-wsw-components/ASUB-277-25TP26/1241629

Above: DB9 cable for representation of the 9-pin
UTHP connector

Circuit Protections
➢ Protect the BeagleBone during Boot

➢ LTV-247 Optoisolators for higher-voltage

➢ SN74LVCH16 transceivers / translators

○ Buffering BeagleBone GPIO pins

➢ Bi-directional ESD protection for logic inputs

➢ Numerous decoupling capacitors

Above: Buffer used for BeagleBone GPIO pins.
Above: Optoisolator for higher-voltage inputs.

Above: ESD protection IC’s for
digital inputs.

Logic Analyzer
➢ 12-inputs connected through ESD

protections > buffer > BeagleBone

GPIO pins

➢ Utilizes SN74LVCH16 buffer

➢ 24 pin header interface:

○ 12 pins grounded

○ 4 high voltage pins

○ 8 pins for 0-5V logic

Left: Current logic analysis circuit
implementation for the UTHP.

Right: Wurth 24-pin header for logic
analysis.

Yocto Build Hardware Tools

Tools / Software (In the Works)
Recipes are being built for the following tools for the UTHP:

• Cmap

• Scapy

• Python-can-j1939

• TruckDevil

• CanCat

• Py-hv-networks

• Plc4trucksduck

• Pretty_j1939

• Pretty_j1587

• Sigrok

• Can2 Decoder

• Canmatrix

• Ipython3

• Tmux

• Jupyter-lab

Please suggest your

favorite hacking tool

so we can include it

in the build.

Grateful

Acknowledgement

Thank you to NMFTA for the support for this

project.

Once completed, NMFTA members should

have access to the UTHP.

Seeking beta testers to provide feedback.

Thank you

	Slide Number 1
	What is the UTHP ?
	Why do we need a new Platform ?
	CyberTruck Challenge
	Participants
	Slide Number 6
	Slide Number 7
	What’s it like?
	What’s it like?
	Slide Number 10
	Truck Networks
	Cybersecurity Threats in Commercial Vehicles
	Cybersecurity Threats in Commercial Vehicles
	Cybersecurity Threats in Commercial Vehicles
	Slide Number 15
	What is Yocto ?
	Why Choose Yocto ?
	Building with Yocto for UTHP
	Building with Yocto for UTHP
	The Yocto Built: Is It Complete ?
	Customizing the build: Recipes & Layers
	Customizing the build: Adding CAN
	Customizing the build: USB ETHERNET
	Customizing the build: Adding J1939
	Current Status
	Slide Number 26
	Truck Networks
	Hardware Overview
	BeagleBone Black
	UTHP PCB
	Controller Area Network (CAN)
	CAN Schematics
	Local Interconnect Network (LIN)
	Power Line Communication (PLC)
	Power Line Communication (PLC)
	Power Line Communication (PLC)
	J1708 / J1587
	Real-Time Clock + Security Chip
	Safe Power-Down
	Safe Power-Down
	Safe Power-Down
	Connectors
	Circuit Protections
	Logic Analyzer
	Slide Number 45
	Tools / Software (In the Works)
	Grateful Acknowledgement
	Slide Number 48

