Commercial Transportation: Truck Hacking

Agenda

▶ 50 mins

- What is CT? Why does it matter?
- About
 - ► Trucks
 - Trailers
 - Maintenance
 - Distribution centers
 - Intermodal

- Vehicle Networks
 - ► J1939
 - ▶ J1708/J1587
 - ► J2497
- 'Hacking'
 - CAN Attack Methods
 - What can you do?
 - What needs more?
 - Other 'Hacking'
- Get Involved

- ToolsExamples
 - ► More
- Closing
 - Review
 - Call for Collaboration

About Me

linkedin.com/in/Ben0L0Gardiner

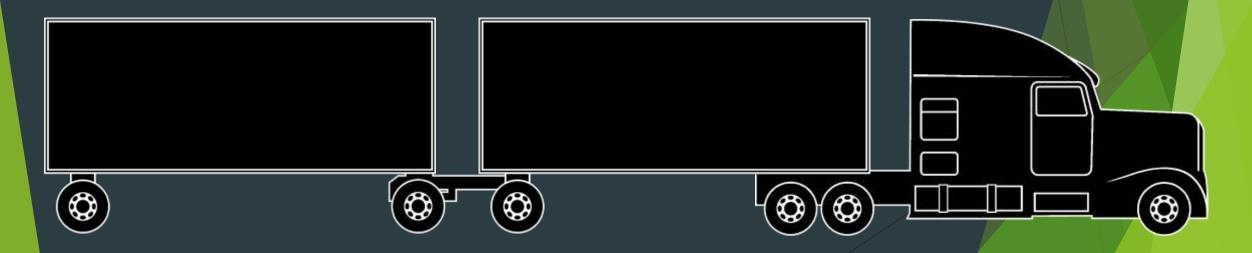
github.com/BenGardiner

- **Ben Gardiner**
 - Senior Cybersecurity Research Engineer contractor
 - Experience: Embedded systems dev, RE
 - ► CyberTruckTM Challenge Instructor
 - **DC HHV & CHV volunteer**
 - SAE volunteer

About Commercial Transportation

What is Commercial Transportation (CT)?

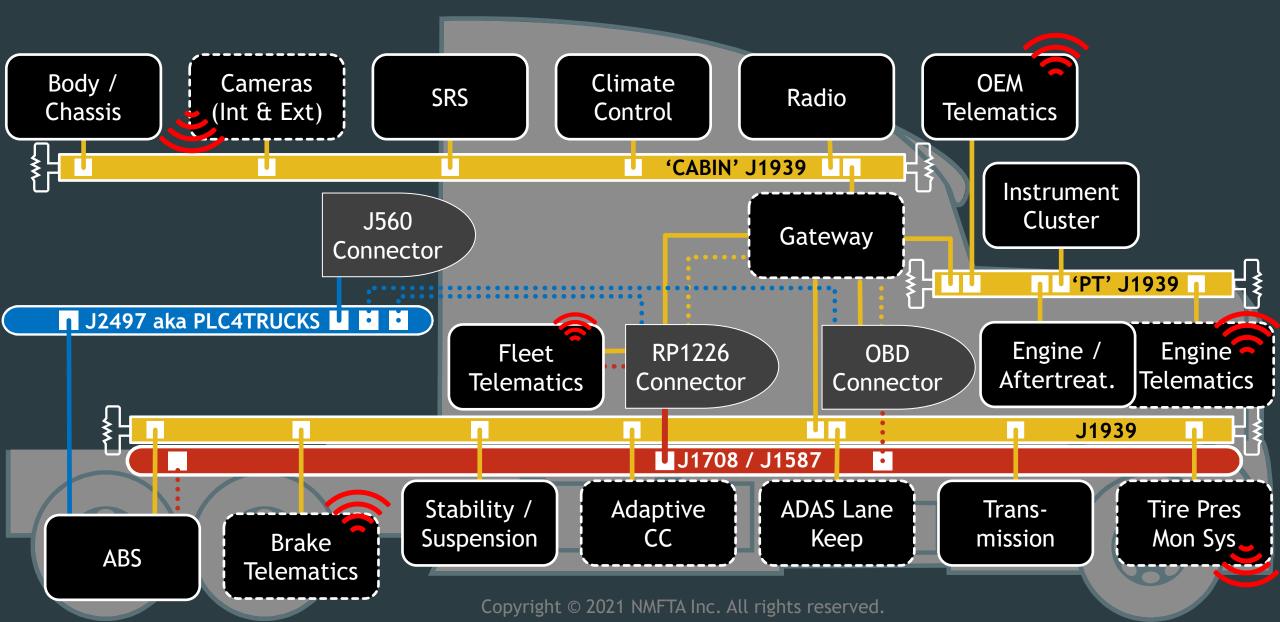
All transportation of goods or people for business purposes (a large topic)



CC BY-SA kees torn

Why does CT Security Matter (Trucking Specifically)?

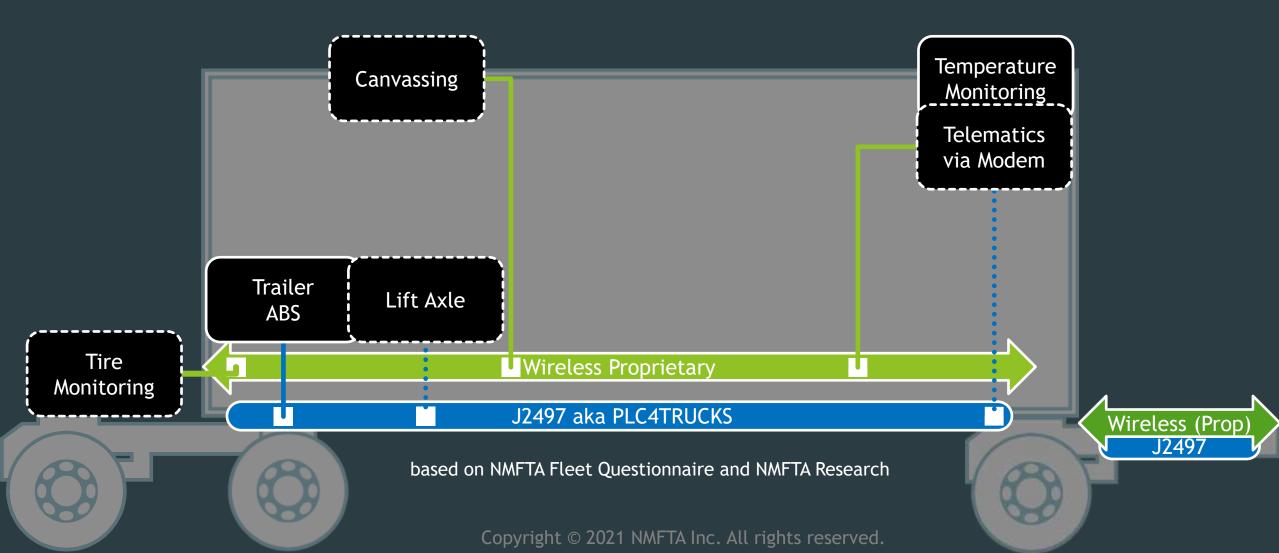
- "If you bought it, it came on a truck"
- Truck problems are big problems for society. c.f. "<u>A week without Truck</u> <u>Transport</u>" at iru.org
- Safety issues with Trucks are all our Issues


Why does CT Security Matter (All Modes)?

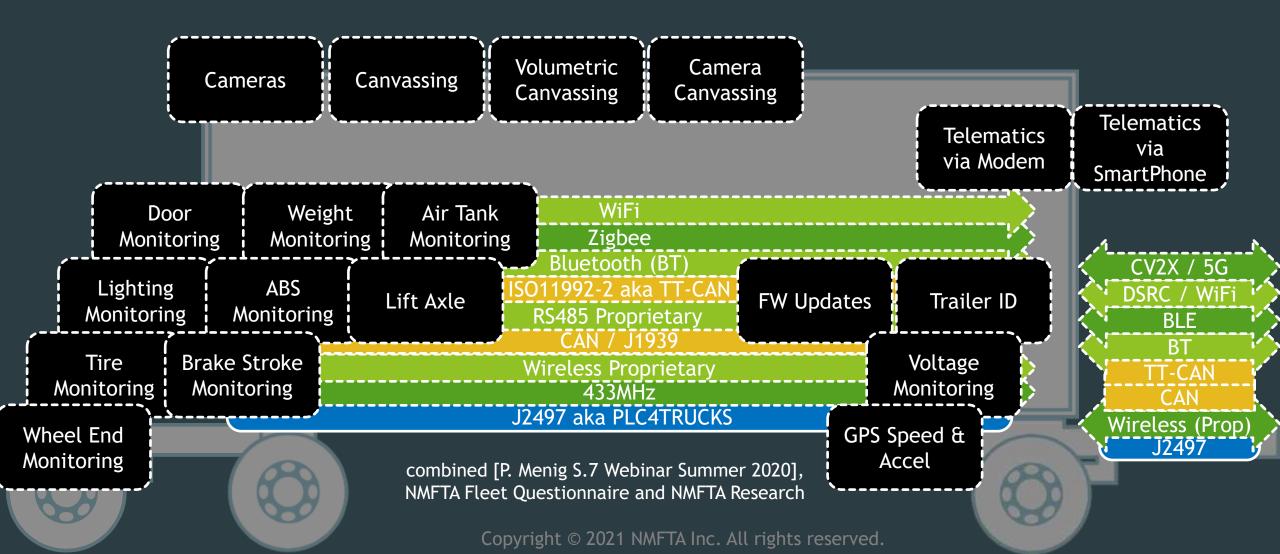
 The global supply chain links all of us
 All modes share technologies
 e.g. the CanBusHack de-rate disablement abuse is applicable across modes [https://ioactive.com/guesturban-johnson-nmfta/]

CC BY Vectors Market

About <u>Trucks</u> ►


aka Tractors *aka* Power Units aka 'The things that roll'. If it isn't moving then the fleet is losing money.

About Trucking: Trailers


The other things that roll

 Outnumber tractors (in North America)
 Many features today

About Trucking: Trailers

And more growing everyday

About Trucking: Maintenance

Commercial Vehicles are owned for and by commercial motor freight carriers and leasing companies (e.g. Penske).

The fleets protect their investments with preventative maintenance.

- Tractors spend more time in a service center connected to diagnostics than any passenger car [haystack and sixvolts, <u>Cheap Tools for</u> <u>Hacking Heavy Trucks</u>]
- Diagnostics software is authorized to do lots of very powerful things including [Burakova, Hass, Millar, and Weimerskirch, <u>Truck Hacking:</u> <u>An Experimental Analysis of the SAE J1939 Standard</u>]:
 - disabling engine cylinders and
 - cycling ABS pressure valves
- Most diagnostics software is low-quality windows software

Copyright © 2021-2022 NMFTA Inc. All rights reserved.

CC BY Oksana Latysheva, UA

About Trucking: Distribution Centers

- Fleets make extensive use of distribution or service centers.
 - e.g. Less Than Truckload (LTL) -> 'terminals'
- Trailers spend a lot of time here: either docked or parked
- Distribution centers have:
 - A lot of technology
 - (and a lot of attack surface)
 - that's a whole other topic

About Trucking: Intermodal

- Some fleets make extensive use of *intermodal* aka 'shipping containers' which were designed to be able to go from the deck of a ship to a train or tractortrailer and vice-versa
 - intermodal also includes the interchange of trailers between trucks and railroads, and trucks and barges or ships
- Some intermodal containers have networking interconnects to the vehicle networks on which they are being carried
- Many intermodal containers have their own telematics modems. [https://seanews.co.uk/features/a-world-where-all-shipping-containers-aresmart-and-connected/]

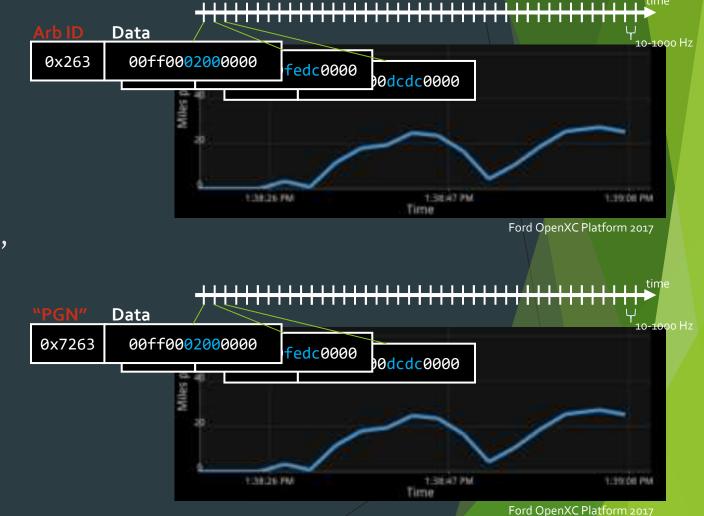
CC BY Joedamadman

CC BY Doug Wertman

CC SA Photocapy

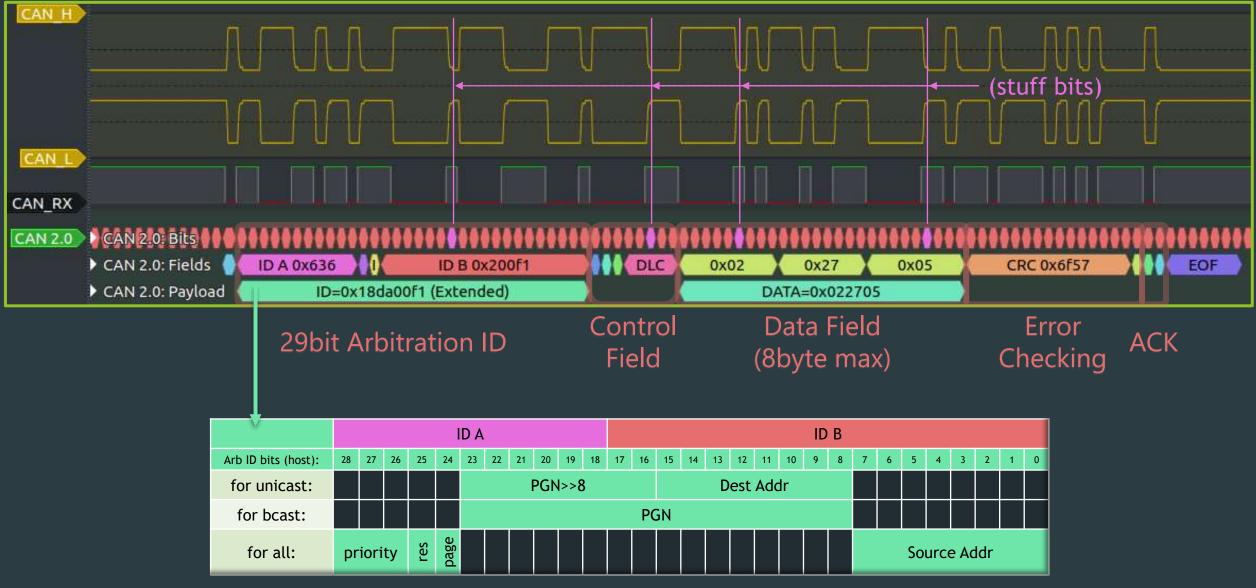
About the Other Modes

- The modes share technologies
 - e.g. Ships use J1939 -- there it is called NMEA
 - e.g. Trains use J1939 too... Where there's a diesel engine there is J1939
- Also: all of the modes are bolting-on "Internet of Things" (IoT) 'stuff'



from: http://www.teamliftss.com/workshop/port-intermodal-solutions/

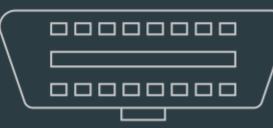
Truck Vehicle Networks: J1939


J1939 in relation to CAN in Passenger Cars

- Both: encoding time-varying signals into bitfield locations and diagnostics
- Passenger cars:
 - 1. proprietary Arbitration ID,
 - 2. proprietary bitfield locations,
 - 3. standard diagnostics (mostly)
- ▶ J1939:
 - 1. standard PGNs (mostly),
 - 2. standard SPNs (mostly),
 - 3. proprietary diagnostics

J1939 Specifics: CAN Frames

sigrok with <u>kentindell/canhack</u> can2 decoder:

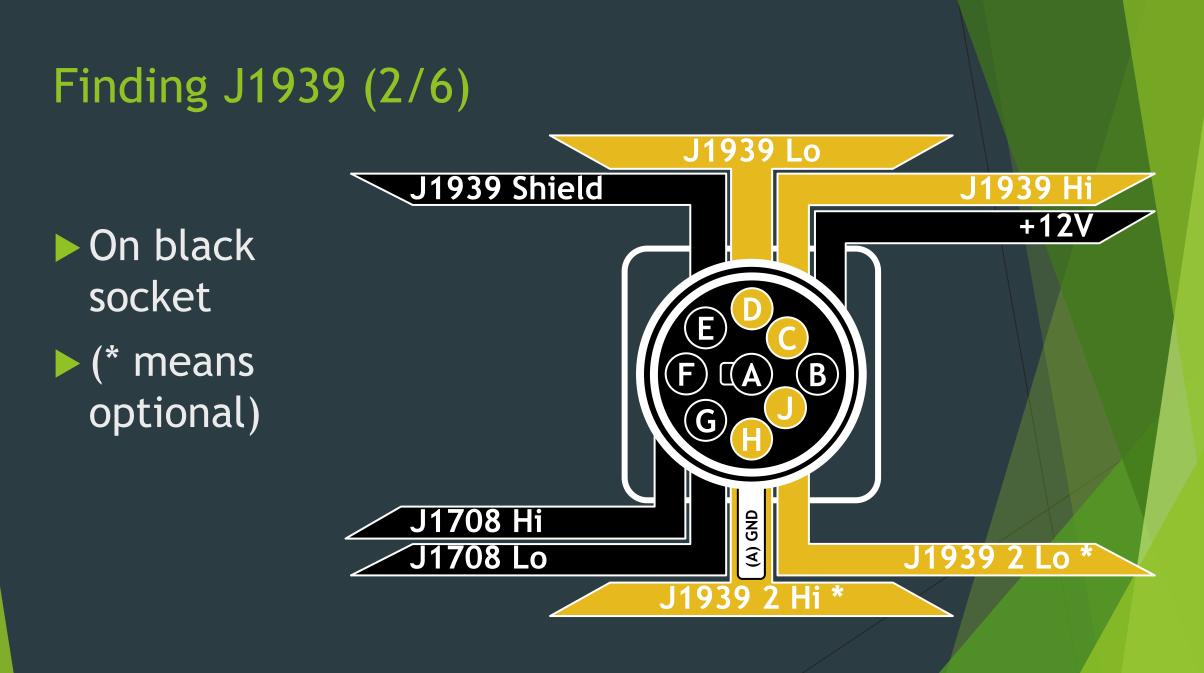


J1939 Features

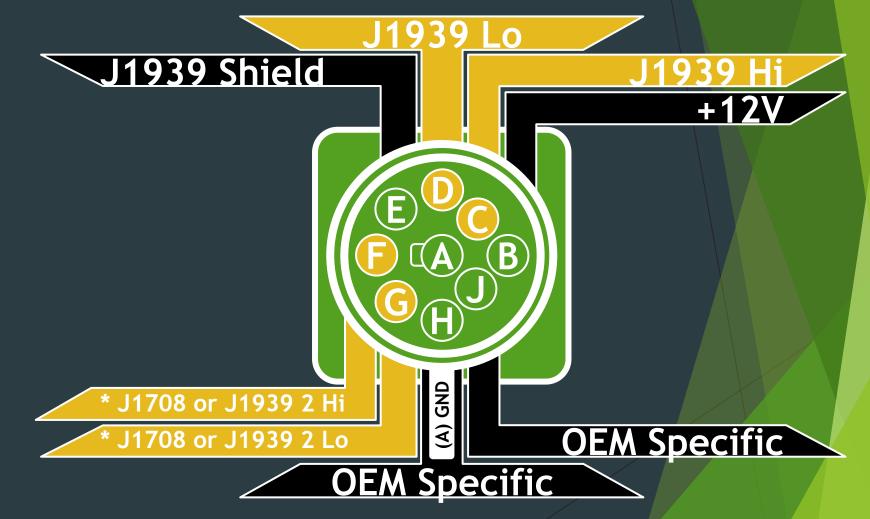
- Both unicast (PGNs < 0xF000) & broadcast (>= 0xF000)
- Transport fragmentation and reassembly (PGNs 0xEC00 and 0xEB00)
- Address claiming (OxEE00)
- Request of PGNs (0xEA00)
- Proprietary messages:
 - destination-specific (propA 0xEF00, propA2 0x1EF00) and
 - broadcast (propB0 0xFF00-0xFFFF, propB1 0x1FF00-0x1FFFF)
- Dump, reconfigure, reflash (for the fun stuff') is all protected by a challenge-response system called Seed-Key Exchange
 - over ISO 15765-2 aka ISO-TP for UDS (0xDA00)
- For more details see Hannah Silva's CyberTruck Challenge[™] 2021 Training www.cybertruckchallenge.org/wp-content/uploads/2021/08/Truck-Networks-Print.pdf

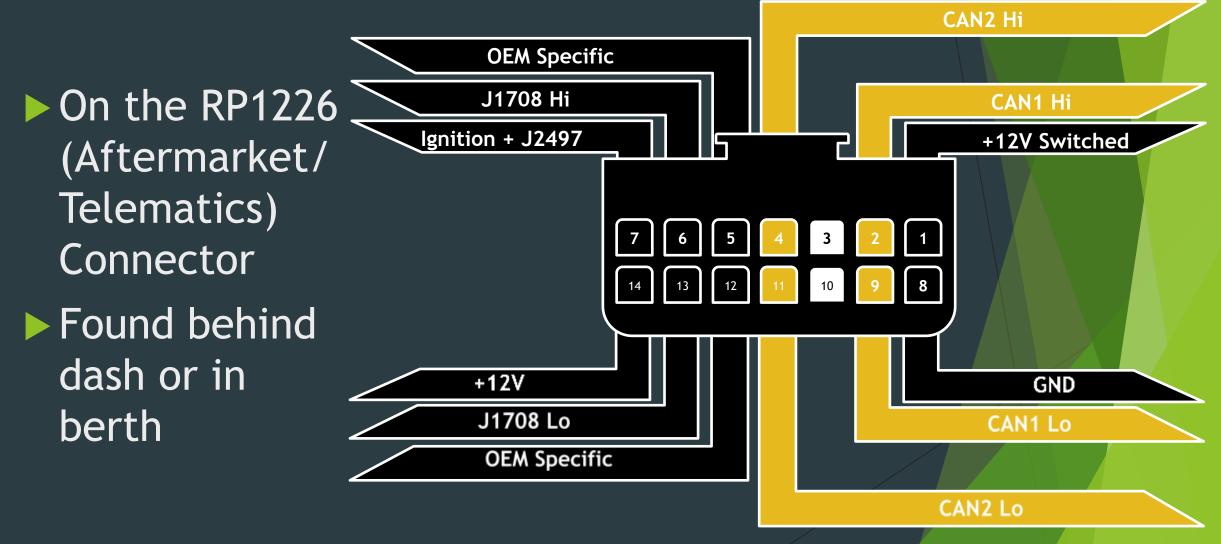
Finding J1939 (1/6)

- In-cab or On-Board Diagnostics J1939 connector
- Black or Green
- ► Some OEMs use the passcar OBD-II connector.



CC BY-SA Florian-schäffer


Dr. Jeremy Daily



► On green

socket

Finding J1939 (4/6)

Finding J1939 (5/6)

Other wires in the truck too...

~6 separate CAN segments

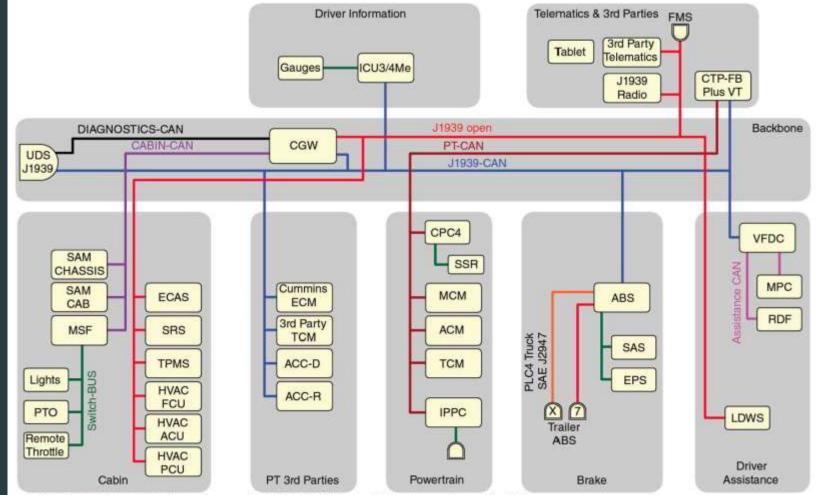
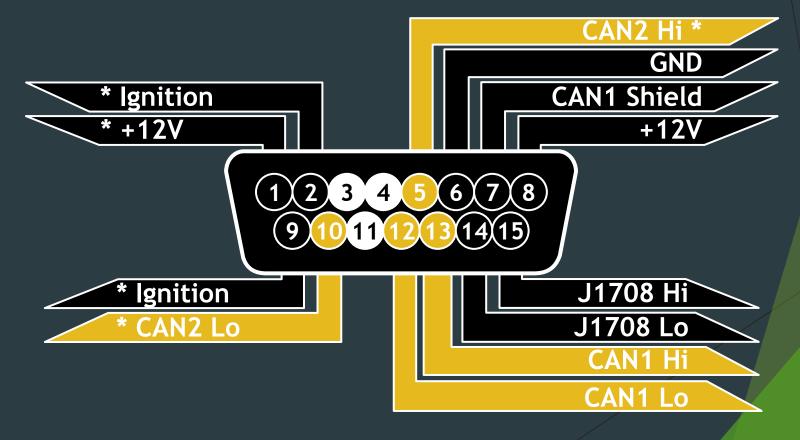
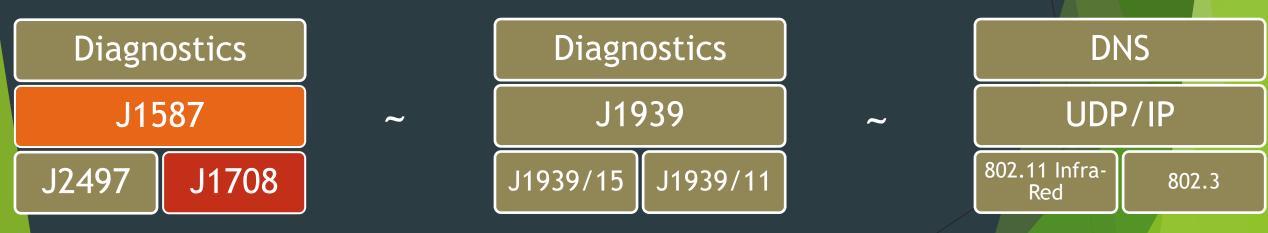



FIGURE 26-25 Three J-1939 channels are used on the latest HD tractors. UDS now operates over the CAN.

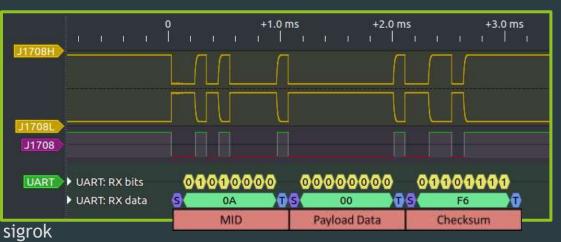
[Duffy, Owen C., and Gus Wright. Fundamentals of Medium/Heavy Duty Commercial Vehicle Systems: 2014 NATEF Edition. Jones & Bartlett Publishers, 2015]

Finding J1939 (6/6) On a DB-15 Connector (common in heavy vehicle cables)



Truck Vehicle Networks: J1708/J1587

J1708/J1587 Specifics (1/3)


Predates J1939 by many years. Sometimes still found in the tractor. Always still found in the Trailer as J2497 (more on that later).

J1708/J1587 by analogy:

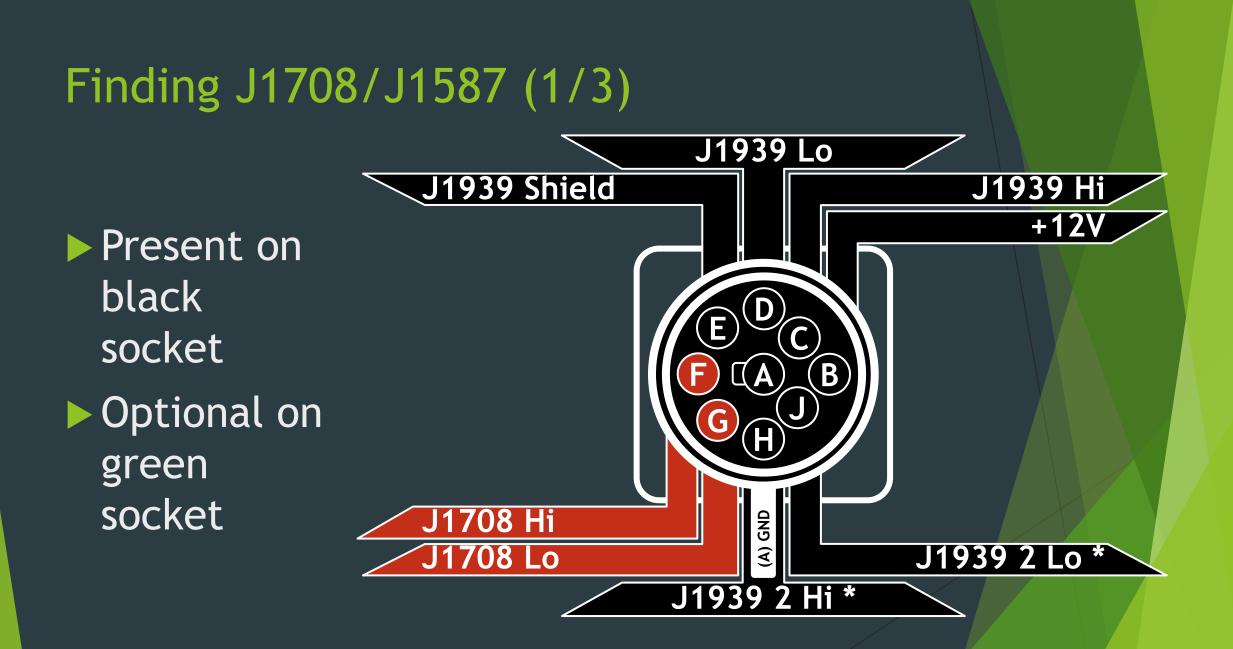
<u>J1708</u>/J1587 Specifics (2/3)

- Has similar bus arbitration to CAN: lowest first byte wins.
- 9600bps / 8N1
- Very much like an <u>RS-485</u> bus at physical layer
- Has RT constraints for framing and bus arbitration
- The first byte is like a source address: the MID

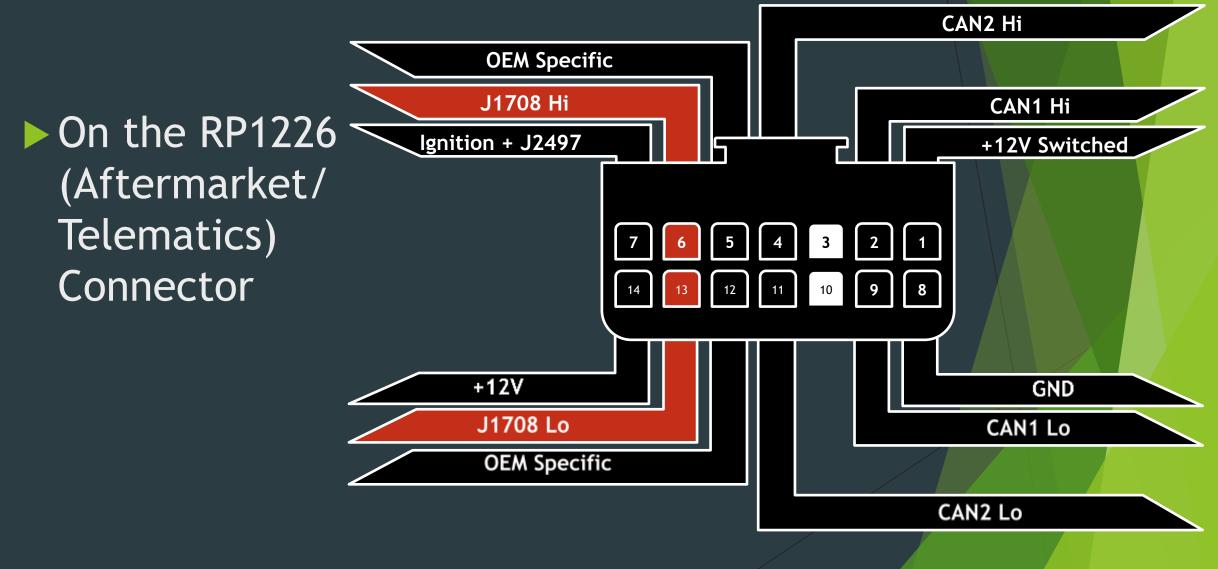
- Some noteworthy MIDs from the specs (J1708/J1587/J2497)
 - 111 is used for factory test
 - ▶ 128-255 are defined by J1587
 - 64 & 172 are off-board diagnostics
 - 48 & 153 are on-board diagnostics
 - 182 is off-board programming
 - 163 is 'vehicle security'
 - 207 is for drivetrain bridge
 - 217 & 218 tractor & trailer bridges
 - 87 is for J2497 active ABS event
 - 125 is for J2497 identification
 - 10 (0x0a) and 11 (0x0b) are J2497 lamp on/off

J1708/J1587 Specifics (3/3)

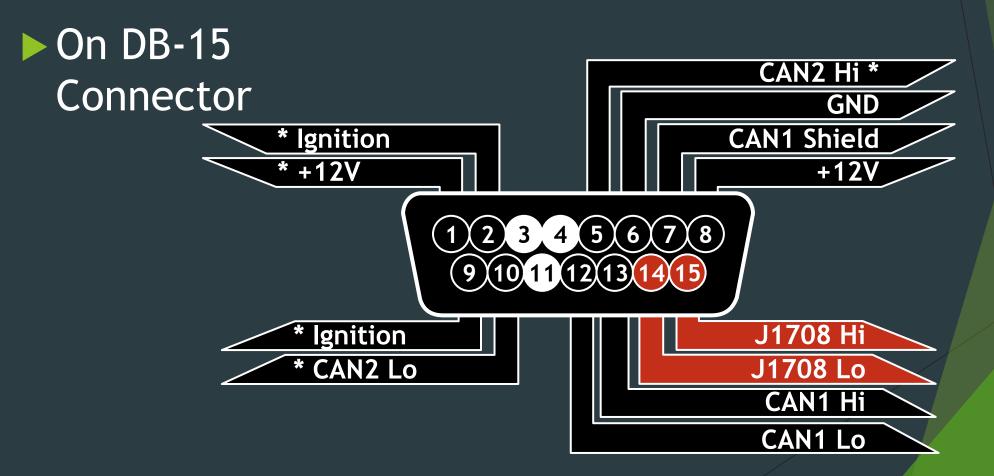
- signals are identified by a PID byte prepended to the signal
- can be multiple PIDs in one J1587 frame

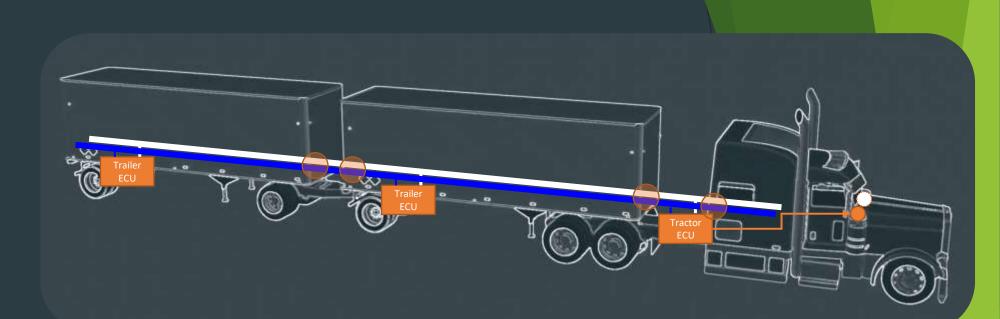

PIDs > 255 use multi-byte PID extension

Decoding of PIDs is done by reference to the J1587 specification.


There are tools that can convert the SAE PDF into a database and do decode.

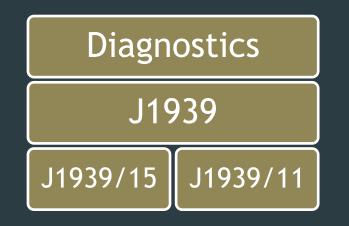
J1587 Features

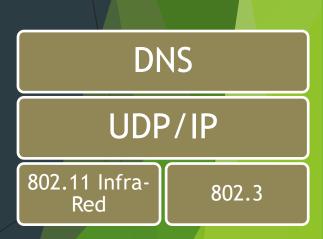

- Mostly broadcast (some unicast)
- Requests for data:
 - PID 0 (broadcast) / PID 128: Component specific (unicast)
- Has fragmentation and reassembly (Frames should be less than 21 bytes if the vehicle is in motion)
 - PID 192: 'multisection' parameter (broadcast)
 - PID 197 and 198: transport protocol (unicast)
- Standardized Free-Format Data' requests on transport protocol
 - e.g. 'Programmable Params' / 'Calibration', 'Executable Code'
- Proprietary messages: 'Data Link Escape' (unicast) for stuff'
 - ▶ PID 254 and 510
 - e.g. "AC FE 80 F0 17" is from MID 0xAC to 'MID' 0x80



Finding J1708/J1587 (2/3)

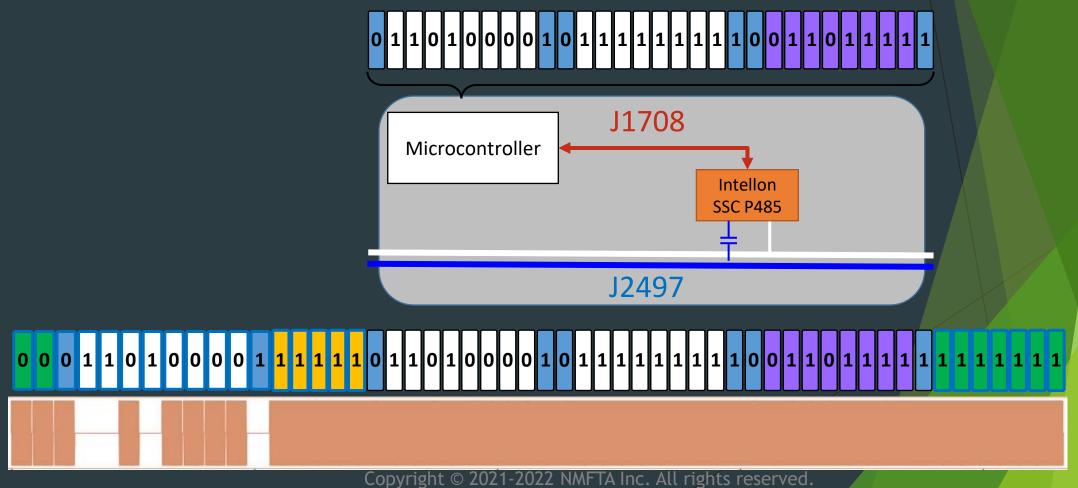
Finding J1708/J1587 (3/3)




Truck (and Trailer) Vehicle Networks: J2497

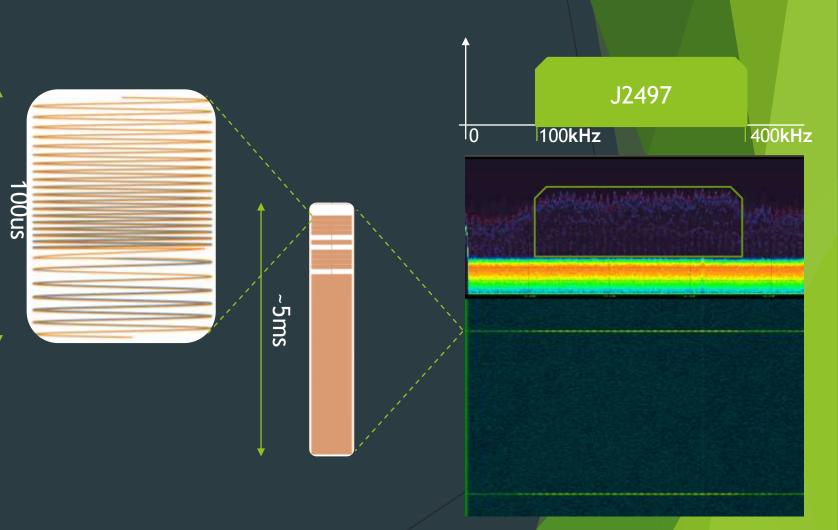
J2497 Specifics (1/2)
Roughly speaking, it is "J1708 over trailer power lines"
a.k.a. *PLC4TRUCKS*Again by analogy:

 \sim


Copyright © 2021-2022 NMFTA Inc. All rights reserved.

 \sim

J2497 Specifics (2/2)


► J1708 ↔ J2497

Implemented almost exclusively by the Intellon SSC P485 chip

J2497 Specifics (3/4)

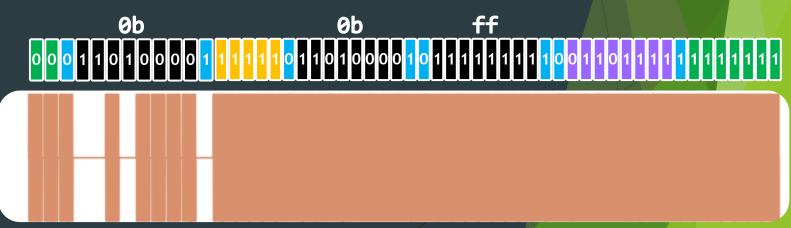
- The chirps are 100us in duration, between 2.5 and 7V peak-peak
- The chirps sweep from 203KHz through 400KHz (63us) then to 100KHz (4us) and back to 203KHz (33us) to finish

J2497 Specifics (4/4)

Preamble

- Amplitude Shift Keying (ASK)
- Bit time 114us (14us silence after 100us chirp)
- Logic '0' = chirp present
- Initial symbols (1-2 logic '0')
- Start bit (logic '0')
- MID bits (duplicated in body)
- Stop bit (logic '1')


<u>Body</u>


- Phase Shift Keying (PSK), 180deg difference
- Bit time 100us
- Logic '0' symbol is arbitrary per device, determined by the symbol transmitted in the preamble
- Sync symbols (5 logic '1')
- J1708 Body Bytes. MID followed by Data
 - Start bit (logic '0')
 - Data bits (8)
 - Stop bit (logic '1'

J1708 Checksum Byte

- Start bit (logic '0')
- Checksum bits (8)
- Stop bit (logic '1')
- Gap (0-4 logic '1') & End symbols (5 logic '1')

	Preamble (ASK)	Body (BPSK)						
	MID (Arbitration)		MID	Payload Data	Checksum			
11	<mark>в мммммммм s</mark>	RRRR	BMMMMMMMS	BDDDDDDD <mark>S</mark>	BCCCCCCCCS	GGEEEE		

J2497 Features

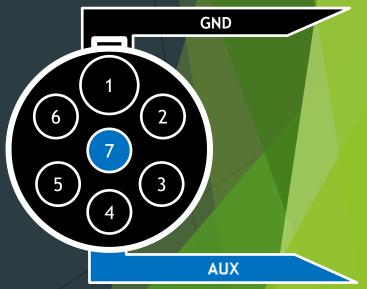
- Primary purpose is for 0a00 and 0bff LAMP ON and LAMP OFF messages. But there's more:
- ► Has all the feature of J1708/J1587 plus:
 - dynamic address (MID) claim (PID 4)
 - data transfer bridging (PIDs 204 and 460)
- Trailer brake diagnostic functions such as ABS air pressure valve cycling and ECU reconfiguration
- Some trailer brake ECUs have scripting languages programmable over J2497
- because of the added preamble/MID byte it is possible to create J2497 frames that <u>override bus arbitration</u>
 - e.g. a J2497 priority of maximum 00 and a J1708 priority of minimum ff which overrides all J2497 traffic but is received as MID ff
- Radiates enough energy to be read remotely at 6ft from trailer



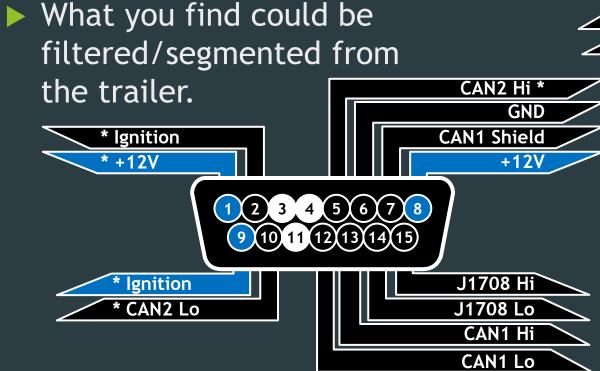

Finding J2497 (1/5)

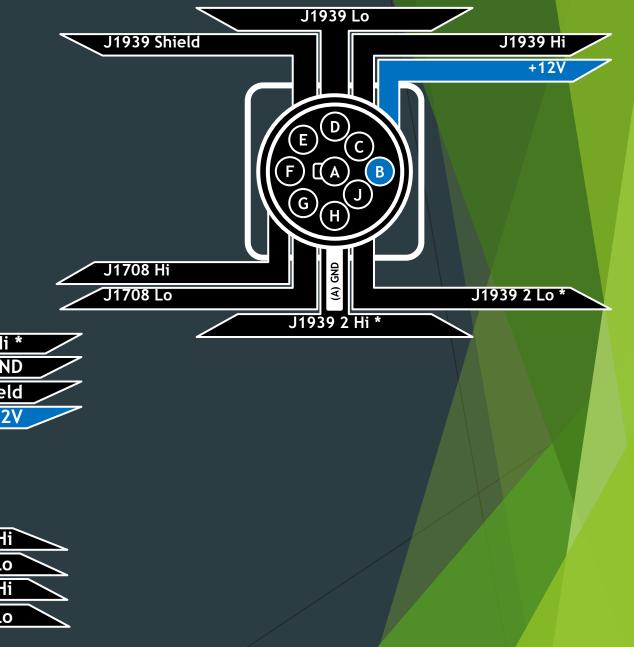
Will <u>always</u> be on the power pin (AUX) of the trailer J560 connector (at back of tractor / front of trailer)

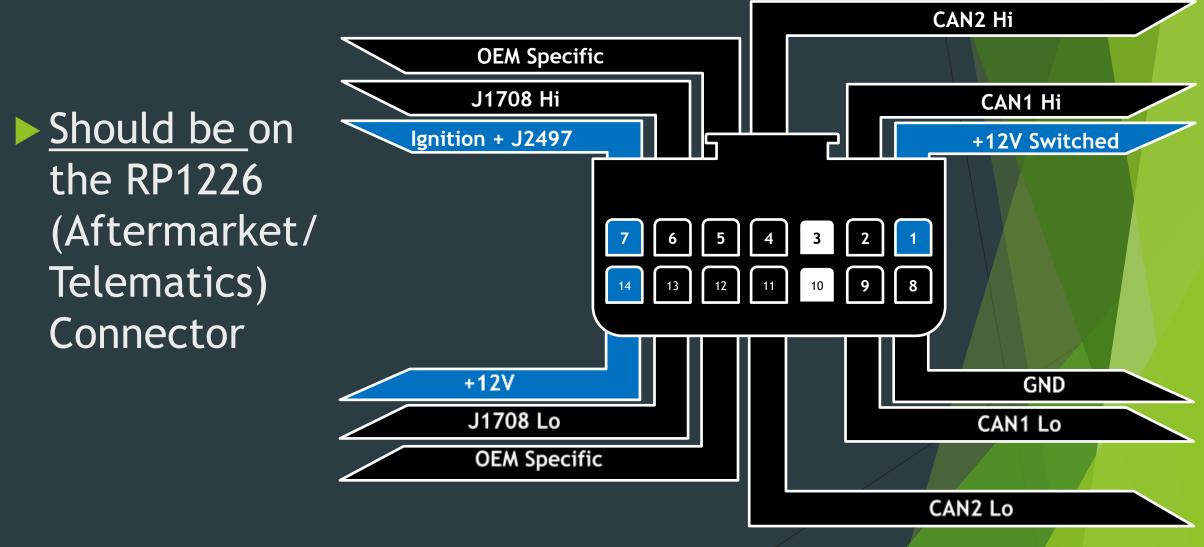
CC BY-SA MobiusDaXter



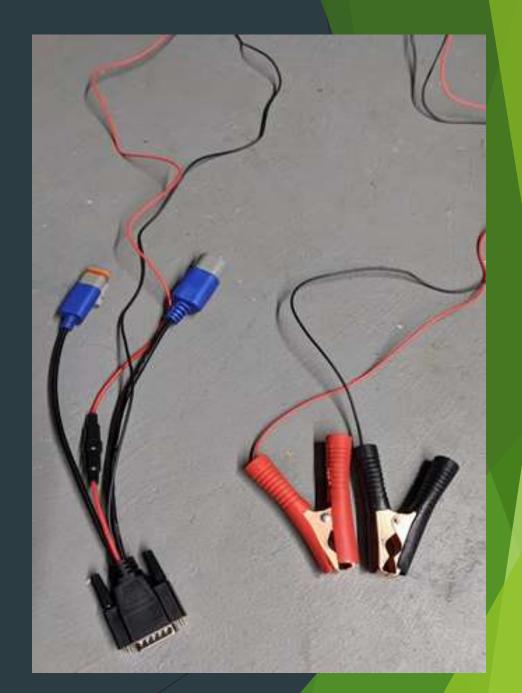
www.ebay.ca/itm/Bendix-ABS-Trailer-Remote-Diagnostic-Unit-TRDU-PLC-Adapter-9-pin-Connection



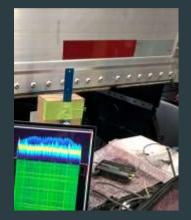


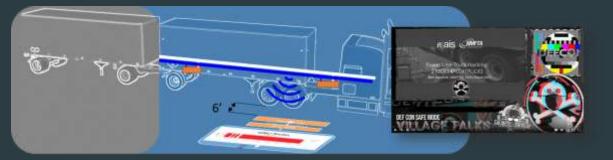

Finding J2497 (2/5)

Might be on the power pins of the diagnostics connector



Finding J2497 (3/5)


Finding J2497 (4/5)


Might be on the battery terminals -but what you find could be filtered/segmented from the trailer.

Finding J2497 (5/5)

▶ Might just radiate away from the trailer. ICSA-20-219-01

Chris Poore & Ben Gardiner. *Power Line Truck Hacking:* 2TOOLS4PLC4TRUCKS

▶ Might be writable via RF. ICSA-22-063-01

Chris Poore & Ben Gardiner. <u>Trailer</u> <u>Shouting</u>, DEF CON 30 :

Other Vehicle Networks

Vehicle Networks: Intermodal

J1939 is found wherever there's a diesel engine
 Probably also J1708/J1587
 J2497 might be found on containers

Vehicle Networks: More

LIN
CAN-FD, CAN-HG
Automotive Ethernet (BroadR-Reach)
<u>Much More</u> Wireless

'HACKING'

CAN Attack Methods (below J1939)

Bus Flood	ALL e.g. Socket CAN	while Tr sock.s		\x00\x00\x	00\x01\x00')			
(Simple) Spoofing	Y	sock.sen	sock.send(b'x18xdax00xf1x03x02x27x05')					
2		0x636	ID B 0x200F1 1 (Extended)					

CAN Attack Methods (below J1939)

	ALL e.g. Socket CAN	CAN Hack	CANT	CANHack by Dr. Ken Tindell @ CANIS CANT by b1tbane & ehntoo @ GRIMM Notes:
Bus Flood	Υ			
(Simple) Spoofing	Υ			\leftarrow the means for nearly all the attacks discussed next
Bus-Off / Bus Killer		Y	Y	target an ECU and destroy its frames repeatedly with selective bit override Cho et. Al & Maggi, F. c.f. also ICS-ALERT-17-209-01
(ASAP) Spoofing		Y		takes advantage of bitbanging to ensure attack frame is entered into arbitration ASAP after the target frame
Double Receive		Y		make a transmitter double-send a frame, error is only visible to transmitter and every other node receives same frame twice
Freeze / Overload		Υ	Y	send a number of overload frames after a target frame
Error Passive Spoofing / Data Replacer		Y	Y	put a target into error passive mode then put an attack frame in front of a target frame aka " <i>bit smashing</i> "
Janus [Tindell]		Y		create a custom bitstream for two sampling point values so that receivers configured to those sampling points will receive different frames
Bus Short			Y	(cyber paperclip mode): shorts CAN_H+CAN_L (requires analog switch)
NACK			Y	clobber ACK bit by asserting a recessive state on the bus (requires analog switch)
(Improved) Data Replacer			Y	" but can clobber also dominant bits (requires analog switch)

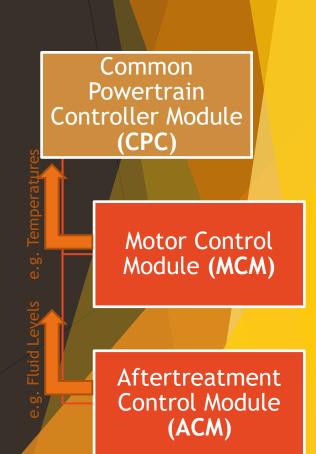
CAN Attack Methods (below J1939)

AL e.g Sock ÇA	et CAN	CANT	CANHack by Dr. Ken Tindell @ CANIS CANT by b1tbane & ehntoo @ GRIMM Notes:
Bus Flood			
(Simple) Spoofing			\leftarrow the means for nearly all the attacks discussed next
Bus-Off / Bus Kille	Y	Y	target an ECU and destroy its frames repeatedly with selective bit override Cho et. Al & Maggi, F. c.f. also ICS-ALERT-17-209-01
(ASAP) Spoofing	Y		takes advantage of bitbanging to ensure attack frame is entered into arbitration ASAP after the target frame
Double Receive	Y		make a transmitter double-send a frame, error is only visible to transmitter and every other node receives same frame twice
Freeze / Overload	Y	Y	send a number of overload frames after a target frame
Error Passive Spoofin / Data Replacer	Y	Y	put a target into error passive mode then put an attack frame in front of a target frame aka " <i>bit smashing</i> "
Janus [Tindell]	Y		create a custom bitstream for two sampling point values so that receivers configured to those sampling points will receive different frames
Bus Short		Y	(cyber paperclip mode): shorts CAN_H+CAN_L (requires analog switch)
NACK		Y	clobber ACK bit by asserting a recessive state on the bus (requires analog switch)
(Improved) Data Replacer		Y	" but can clobber also dominant bits (requires analog switch)

What can you do on Heavy Vehicle Networks (1/11)?

- Some examples that have been made public
- Each result is true only on specific model year builds of trucks

What can you do (2/11)? J1939: Vehicle Disable / Limp by DEF Additive Message Manipulation


[Jonson, Urban. A comprehensive review of cyber security for heavy vehicles for the NMFTA membership. (2015) <u>http://www.nmfta.org/documents/ctsrp/nmfta heavy</u> <u>duty vehicle cyber security whitepaper v1.0.3.6.pdf]</u>

What can you do (3/11)? J1939: Denial of ECUs

[Mukherjee, Subhojeet & Shirazi, Hossein & Ray, Indrakshi & Daily, Jeremy & Gamble, Rose. (2016). Truckers Beware: Practical Denial-of-service Attacks in Embedded Networks of Commercial Vehicles. <u>http://www.cs.colostate.edu/dbsec/HeavyVehicle/wp-</u> content/uploads/9783319498058-c2.pdf]

What can you do (4/11)? J1939: Vehicle Disable / Limp by Engine De-Rate Message Manipulation Research by CanBusHack

- [Jonson, Urban. IOActive Guest Blog | Urban Jonson, Heavy Vehicle Cyber Security Program, NMFTA. (2020). <u>https://ioactive.com/guest-urban-johnson-nmfta/</u>]
- More details available at <u>ctsrp.nmfta.org</u>

What can you do (5/11)? J1708/J1587: Malicious Misconfiguration of a Truck ECM

[Haystack and sixvolts. Cheap Tools for Hacking Heavy Trucks. DEF CON 24 Car Hacking Village. <u>https://github.com/TruckHacking/DEFCON24/raw/master/Cheap-Tools-For-Hacking-Heavy-Trucks-Slides.pdf]</u>

What can you do (6/11)? J1939: Instrument Cluster Override

 [Yelizaveta Burakova, Bill Hass, Leif Millar, and André Weimerskirch, Truck Hacking: An Experimental Analysis of the SAE J1939 Standard, Usenix WOOT, August 11-12, 2016, Austin, TX, USA.
 <u>http://www.weimerskirch.org/files/BurakovaEtAl_TruckHacking.pdf</u>]

What can you do (7/11)? J1939: RPM control and Engine Brake Disable

 [Yelizaveta Burakova, Bill Hass, Leif Millar, and André Weimerskirch, *Truck Hacking: An Experimental Analysis of the SAE J1939 Standard*, Usenix WOOT, August 11-12, 2016, Austin, TX, USA.
 <u>http://www.weimerskirch.org/files/BurakovaEtAl_TruckH</u> <u>acking.pdf</u>]

What can you do (8/11)? J1708/J1587: Disable Engine Cylinders

 [Yelizaveta Burakova, Bill Hass, Leif Millar, and André Weimerskirch, Truck Hacking: An Experimental Analysis of the SAE J1939 Standard, Usenix WOOT, August 11-12, 2016, Austin, TX, USA.
 <u>http://www.weimerskirch.org/files/BurakovaEtAl_TruckHacking.pdf</u>]

What can you do (9/11)? J1708/J1587 / J2497: Cycle ABS Air Release Valves

 [Yelizaveta Burakova, Bill Hass, Leif Millar, and André Weimerskirch, Truck Hacking: An Experimental Analysis of the SAE J1939 Standard, Usenix WOOT, August 11-12, 2016, Austin, TX, USA.
 <u>http://www.weimerskirch.org/files/BurakovaEtAl_TruckHacking.pdf</u>]

What can you do (10/11)? J2497: Remote Read <u>and Write</u> of Traffic

- [Poore, Chris & Gardiner, Ben. Power Line Truck Hacking: 2TOOLS4PLC4TRUCKS. DEF CON 28 SAFE MODE Car Hacking Village. <u>https://youtu.be/sf3JznYTo0I</u>]
- [Poore, Chris & Gardiner, Ben. Trailer Shouting Talking PLC4TRUCKS Remotely with an SDR DEF CON 30. <u>https://youtu.be/Na8K_fVEzQo</u>]

What can you do (11/11)? Summary

Network	'Hacking'	Who
J1939	Vehicle disable/limp by DEF message manipulation	Jonson (NMFTA)
J1939	Denial of ECUs	Mukherjee et. al.
J1939	Vehicle disable/limp by de-rate message manipulation	Leale (CanBusHack)
J1708/J1587	Malicious misconfiguration of truck ECM	Haystack et. al.
J1939	Instrument Cluster override	Burakova et. al.
J1939	RPM control and engine brake disable	Burakova et. al.
J1708/J1587	Disable engine cylinders	Burakova et. al.
J1708/J1587 / J2497	Cycle ABS air release valves	Burakova et. al.
J2497	Remote read and write of traffic	Poore (AIS) et. al.

What <u>needs more</u> 'Hacking'?

Abuse of J1939 and/or J2497 features:

- ECU Firmware Dumping and Re-flashing
- Seed-Key Exchange
- Interesting Body Control Functions
- ADAS features
- Vehicle Network Gateways

Sometimes being introduced for security purposes
Always security relevant (pivoting)

Other Truck & Trailer Hacking

- Like car hacking, this is also the "Olympics of Hacking" -- Will Caruanna
- All the usual IoT mobile, game hacking and RF stuff applies
 - Telematics (usually IoT)
 - Mobile (usually Android)
 - Diagnostics & Maintenance Tools (usually Windows)
 RF (usually (ツ)_/)

Get Involved

Get Involved: CyberTruck Challenge ™

An event specifically to train students. Attended by industry and cybersecurity experts. >10K in free training per-person. Several Trucks present each year. Stipends available for students.

<u>www.cybertruckchallenge.org</u> /participate/

Get Involved: Bench Setups

Necessary

- If you are hacking on a truck then it isn't making the fleet any money
- You can build a Truck in a Box:
 - see Haystack and sixvolts. <u>Cheap Tools for Hacking</u> <u>Heavy Trucks</u>.
 - For the really gory details see Córcega, Jose L. DESIGN OF A FORENSICALLY NEUTRAL ELECTRONIC ENVIRONMENT FOR HEAVY VEHICLE EVENT DATA RECORDERS. Master's Thesis, University of Tulsa. 2015.

Tools for Truck Hacking / Vehicle Networks

Example: decoding J1939 with pretty_j1939.py https://github.com/nmfta-repo/pretty_j1939

CAN Data from public logs at <u>engr.colostate.edu/~jdaily/J1939/candata.html</u>

Example: sending J1939 with SocketCAN on a TruckDuck (1/3)

The TruckDuck <u>https://github.com/TruckHacking/TruckDuckHardware</u> by sixvolt & haystack, @DEF CON 24. Later revisions 1.5 YEET and MEGA.

Also remixed as the Truck<u>Cape</u> by Dr. Daily: <u>https://oshpark.com/profiles/jeremy-daily</u>

Example: sending J1939 (2/3)

import socket import struct

sock = socket.socket(socket.PF_CAN, socket.SOCK_RAW, socket.CAN_RAW) sock.bind(("can0",))

can id = $0 \times 18 \text{EEFF} = 0$

broadcast address claims can id = socket.CAN EFF FLAG # Set the extended frame format bit

```
can data = bytes.fromhex('06 03 BF 01 00 00 00 10') # ex address claim msg
```

can dlc = min(len(can data),8) can_packet = struct.pack("<lB3x8s", can_id, can_dlc, can_data[:can_dlc])</pre> sock.send(can_packet)

> From Dr. Daily's github.com/SystemsCyber/TruckCapeProjects/ Presentation on this topic available at ctsrp.nmfta.org

Example: sending J1939 Alternatives (3/3)

There's a whole bunch of other ways to send J1939 with Python

- Using Linux (since 5.4) .CAN_J1939 e.g. via cpython (since 3.9)
 - Also how haystack's <u>https://github.com/TruckHacking/py-hv-networks</u> works (with backport)
- https://github.com/juergenH87/python-can-j1939 is actively developed
 - Uses also .CAN_RAW on various python-can drivers
 - ► The API here is best suited to developing J1939 ECUs
- And CanCat and TruckDevil
 - No SocketCAN option

Example: decoding J1708/J1587/J2497 with pretty_j1587.py ► github.com/ainfosec/pretty_j1587 ► Developed by Dan Salloum @ AIS

```
# echo ac#ff0189 | ./pretty_j1587.py -f -
MSG: [0xac,0xff,0x1,0x89]
MID 0xac (172): Off-board Diagnostics #1
PID 0x101 (257): Cold Restart of Specific Component
DATA: 0x89
```

```
# echo ac#f31089 | ./pretty_j1587.py -f -
MSG: [0xac,0xf3,0x10,0x89]
MID 0xac (172): Off-board Diagnostics #1
PID 0xf3 (243): Component Identification
DATA: 0x10, 0x89
```

J1587 Data from DEF CON 28 CHV CTF attempts by uhlox (Aug 2020)

Example: sending J1708/J1587/J2497 with j1708send.py on a TruckDuck

https://github.com/TruckHacking/plc4trucksduck

j1708send.py --interface=plc 0a00

#

For more ways to send J2497 see: Power Line Truck Hacking: 2TOOLS4PLC4TRUCKS

More Tools for Truck Hacking Vehicle Networks (1/8)

e.g. TruckDevil, CanCat, canmatrix, grj2497, py-hv-networks, Nexiq USBLink, DGTech DPA4.

TruckDevil (2/8)

- https://github.com/LittleBlondeDevil/TruckDevil
- By Hannah Silva
- For reading, decoding, logging and sending messages on J1939.
- Works with
 - the (very affordable) Macchina M2 via custom FW
 - and any SocketCAN device (via python-can)
- Being grown into an attack framework, starting with a fuzzer
- Training videos available at <u>ctsrp.nmfta.org</u>

CanCat (3/8)

https://github.com/atlas0fd00m/CanCat
 By atlas and also GRIMM CyPhy team
 Works with the M2 via custom FW
 includes J1939 support

canmatrix (4/8)

<u>https://github.com/ebroecker/canmatrix</u>
 by Eduard Bröcker
 Converts between many CAN signal definitions, including support for J1939

https://github.com/ainfosec/gr-j2497
 Developed by Chris Poore @ AIS
 MIT licensed
 Flow graphs with a custom block for reading J2497/PLC4TRUCKS traffic

py-hv-networks (6/8)

 <u>github.com/TruckHacking/py-hv-networks/</u> <u>blob/master/hv_networks/J1587Driver.py</u>
 Developed by haystack and sixvolts
 The core of the TruckDuck features
 A set of python libraries for send+receive of J1939 and J1708/J1587 traffic

Nexiq USBLink (7/8)

A RP1210 Vehicle Diagnostic Adapter (VDA)
One RP1210 VDA is necessary to use any OEM/supplier diagnostics packages
This adapter is cheap and easy to find
Has a DB15 connector for which there are many cables available for purchase as well

DG Tech DPA4 (8/8)

Another RP1210 compatible adapter
 Also has the most-useful DB-15 connector
 Drivers include a very useful data logging feature (called 'debug file' in the settings)

CLOSING

Review

Commercial Transportation is important to <u>us (all)</u>

- Trucks have 3 main types of vehicle networks: J1939, J1708/J1587, and J2497
 - Two (J1939 and J2497) are on all trucks in North America
 - Some are shared with other modes of transportation
- Talented/helpful people have published ~10 'attacks' on vehicle networks
- There are plenty of opportunities for more (abuse aka 'logic bugs' in particular)
- There are a host of free tools for interacting with vehicle networks
- There are many ways for you to get involved !

Collaboration / about the NMFTA CTSRP

The NMFTA Commercial Transportation Security and Research Program (CTSRP) funds and collaborates on a wide array of topics affecting commercial transport, e.g.

- vehicle security offense & defense (topics of this talk)
- backend systems security
- distribution and service center security
- mainframe & 'mid' (IBM z & IBM i series) security

If you are interested in collaborating on a particular project idea, reach out to us please: https://ctsrp.nmfta.org/

References and Resources

References: Public Papers and Presentations for Truck Hacking

- Daily, Jeremy & Kongs, Andrew & Johnson, James & Corcega, Jose. (2015). Extracting Event Data from Memory Chips within a Detroit Diesel DDEC v. 2015. 10.4271/2015-01-1450. <u>https://synercontechnologies.com/wp-content/uploads/2016/05/2015-SAE-Presentation-On-Chip-Level-Forensics.pdf</u>
- Mukherjee, Subhojeet & Shirazi, Hossein & Ray, Indrakshi & Daily, Jeremy & Gamble, Rose. (2016). Truckers Beware: Practical Denial-of-service Attacks in Embedded Networks of Commercial Vehicles. <u>http://www.cs.colostate.edu/dbsec/HeavyVehicle/wp-content/uploads/9783319498058-c2.pdf</u>
- Jonson, Urban. A comprehensive review of cyber security for heavy vehicles for the NMFTA membership. http://www.nmfta.org/documents/hvcs/nmfta%20heavy%20duty%20vehicle%20cyber%20security%20whitepaper%20v1.0.3.6.pdf?v=1
- Haystack and sixvolts. Cheap Tools for Hacking Heavy Trucks. DEF CON 24 Car Hacking Village. <u>https://github.com/TruckHacking/DEFCON24/raw/master/Cheap-Tools-For-Hacking-Heavy-Trucks-Slides.pdf</u>
- Yelizaveta Burakova, Bill Hass, Leif Millar, and André Weimerskirch, Truck Hacking: An Experimental Analysis of the SAE J1939 Standard, Usenix WOOT, August 11-12, 2016, Austin, TX, USA. <u>http://www.weimerskirch.org/files/BurakovaEtAl_TruckHacking.pdf</u>
- Córcega, Jose L. DESIGN OF A FORENSICALLY NEUTRAL ELECTRONIC ENVIRONMENT FOR HEAVY VEHICLE EVENT DATA RECORDERS. Master's Thesis, University of Tulsa. 2015.
- Jonson, Urban. IOActive Guest Blog | Urban Jonson, Heavy Vehicle Cyber Security Program, NMFTA. <u>https://ioactive.com/guest-urban-johnson-nmfta/</u>
- Thuen, Corey. IOActice: Heavy Trucks and Electronic Logging Devices: What Could Go Wrong? <u>https://act-on.ioactive.com/acton/attachment/34793/f-d8737079-c6eb-411c-94d1-f52ffc9df975/1/-/-/-/IOActive-ELoggingDeviceVulnerabilities.pdf</u>
- Salloum, Dan & Hayes, Thomas. *Before J1939: A J1708/J1587 Protocol Decoder*. DEF CON 28 SAFE MODE Car Hacking Village. <u>https://www.youtube.com/watch?v=hal-E4mProk</u>
- Poore, Chris & Gardiner Ben. Power Line Truck Hacking: 2TOOLS4PLC4TRUCKS. DEF CON 28 SAFE MODE Car Hacking Village. <u>https://www.youtube.com/watch?v=sf3JznYTo0l</u>

References: Public Papers and Presentations for Vehicle Hacking

- Cho et al. Error Handling of In-vehicle Networks Makes Them Vulnerable (2016) <u>https://tagi98.github.io/files/publication/ktcho_busoff.pdf</u>]
- Maggi, Federico. A Vulnerability in Modern Automotive Standards and How We Exploited It. (2017) <u>https://documents.trendmicro.com/assets/A-</u> <u>Vulnerability-in-Modern-Automotive-Standards-and-How-We-Exploited-It.pdf</u>
- Brom, Tim and Johnson, Mitchell. When CAN CANT (2018) <u>https://www.youtube.com/watch?v=TRn_Rz2JIYQ</u>
- Tindell, Ken. CAN BUS: ATTACKS AND MITIGATIONS (2020) <u>https://asrg.io/events/15/</u>
- Gardiner, Ben. REMOTE WRITING TRAILER AIR BRAKES WITH RF (2022) <u>https://act-on.ioactive.com/acton/attachment/34793/f-ab6fea27-1929-4ad1-8cd6-7d2094910f66/1/-/-/Trailer-Air-Brakes-RF-NMFTA.pdf</u>

Links to More Resources for Truck Hacking

- CyberTruck Challenge ™ <u>https://www.cybertruckchallenge.org/participate/truck-</u> <u>challenges/</u>
- NMFTA CTSRP unrestricted <u>http://www.nmfta.org/pages/hvcs</u>
- NMFTA CTSRP access-controlled but still free: <u>https://hvcslistservice.nmfta.org/</u>
- NMFTA github org https://github.com/nmfta-repo
- DG Tech reference on heavy vehicle pinouts: <u>https://www.dgtech.com/wp-</u> <u>content/uploads/2016/04/Pinouts_ICR.pdf</u>
- Vector References on Vehicle Networks <u>https://elearning.vector.com/?lang=en</u>
- Truck Hacking github org <u>https://github.com/TruckHacking</u>
- UTulsa github org <u>https://github.com/orgs/Heavy-Vehicle-Networking-At-U-Tulsa/teams</u>
- Colorado State github org <u>https://github.com/SystemsCyber</u>
- Colorado State Heavy Vehicle CAN data <u>https://www.engr.colostate.edu/~jdaily/J1939/candata.html</u>

- SAE J1939: https://www.sae.org/publications/collections/content/j1939_ dl/
- SAE J1939-DA: https://www.sae.org/standards/content/j1939da_202012/
- SAE J1939-21: https://www.sae.org/standards/content/j1939/21_201810/
- SAE J1939-81: <u>https://www.sae.org/standards/content/j1939/81_201703/</u>
- SAE J1708: https://www.sae.org/standards/content/j1708_200408/
- SAE J1587: <u>https://www.sae.org/standards/content/j1587_201301/</u>
- SAE J2497: https://www.sae.org/standards/content/j2497_201207/