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Introduction 
This document’s purpose is to capture all known J2497 attack protection techniques known to-date and to reason about the solutions that could 

reasonably combine them so that a plan for development of fleet-actionable mitigations to the J2497 (PLC4TRUCKS) RF Induced Remote Write 

can be executed. Recall there are (at least) the following types of J2497 attack: 

• RF induced (see the letter Disclosure of Confirmed Remote Write, NMFTA, January 2022) 

• Malware-initiated, bitbanged (see the bitbanging transmitter proof of concept introduced in Power Line Truck Hacking: 

2TOOLS4PLC4TRUCKS, DEF CON 28 Car Hacking Village, August 2020, slides: 

http://www.nmfta.org/documents/ctsrp/Power_Line_Truck_Hacking_2TOOLS4PLC4TRUCKS.pdf?v=1) 

• Malware-initiated, well-formed (also see Power Line Truck Hacking: 2TOOLS4PLC4TRUCKS) 

And the attacks are applicable to both trailer and tractor ABS controllers (and anything else that receives J2497 – but those are by far the most 

common pieces of equipment fielded today). 

This mitigations survey document covers protections in the first section in some detail. The final section is on combined solutions which we 

believe are promising mitigation solutions for fleets. While IDS/IPS solutions are possible they are not covered in this document. 

  

http://www.nmfta.org/documents/ctsrp/Power_Line_Truck_Hacking_2TOOLS4PLC4TRUCKS.pdf?v=1
https://creativecommons.org/publicdomain/zero/1.0/


 
Protection Techniques 
Consider the following protection techniques against the above types of attack. Descriptions of each technique follow the table below. 

 Pros Cons 

PROT1 inline variable 
attenuators 

• Passive components, relatively cheap and easy 
to install. 

• Attenuates both received and transmitted 
signals.  

• Would only protect against RF induced 
attack and some bitbanged attacks 

• Requires tuning attenuator per equipment 
configuration. e.g. needs to be re-tuned 
when switching to double or triple 
configuration 

PROT2 loading with priority 
override frames 

• Simple blind-transmit defense (could bitbang 
it) 

• Possible against all types of J2497 attacks (but 
not 100% see cons) 

• Interframe gap (required) is enough for 
malicious frames. 

• Attacker controlled transmitters don’t have 
to respect frame priority 

• RFI noise 

PROT3 trailer equipment 
sends priority override 
frames 

• Mitigation against DoS of LAMP ON • Only applicable to new equipment designs 

• Attackers can flood with priority override 
frames 

PROT4 trailer wiring 
shielding 

• Passive components, relatively cheap and easy 
to install. 

• Unproven 

• Metal-decked dry-van result suggests 
wrapping trailer wiring in metal might not 
mitigate at all 

• But might work if left as a floating shield 

• Would only protect against RF induced 
attack 

PROT5 RF chokes between 
chassis ground and wiring 
ground 

• Passive components, relatively cheap and easy 
to install. 

• Unproven, but should work based on our 
understanding of RF Induced attacks 

• Would only protect against RF induced 
attack 



 
PROT6 chirp filter inline • Stops all J2947 traffic, including malicious 

frames 
• Stops all J2497 traffic, including LAMP ON 

messages needed to satisfy FMCSA 
regulations 

PROT7 continuous dynamic 
address claimer 

• Simple blind-transmit defense (could bitbang 
it) 

• Possible against all types of J2497 attacks (but 
not 100% see cons) 

• Unproven 

• RFI noise 

• Will not protect old J249 equipment not 
supporting dynamic addresses 

• May allow intermittent unicast attacks 

• Does not protect tractor controllers 

• Might not prevent as-yet unknown exploit 

payloads and abuse commands that don’t 

require unicast J1708 

PROT8 loading with LAMP 
keyhole signal 

• Simple blind-transmit defense (could bitbang 
it) 

• Should prevent exploit payloads and abuse 
commands 

• Possible against all types of J2497 attacks (but 
not 100% see cons) 

• Asymmetrically impacts high data rate signals 
more than low-rate LAMP 

• Unproven, but initially confirmed on lab 

bench 

• Will not prevent LAMP ON attacks 

• RFI noise 

PROT9 flooding with 
jamming signal 

• Simple blind-transmit defense (could bitbang 

it) 

• Stops all J2497 traffic, including malicious 
frames 

• Unproven, but initially confirmed on lab 

bench 

• Stops all J2497 traffic, including LAMP ON 
messages needed to satisfy FMCSA 
regulations 

• RFI noise 

PROT1 inline variable attenuators 
In RF-induced and most bitbanged attacks the signal amplitude of the attacker’s J2497 signal is lower than that of the normal traffic on 

the powerlines. J2497 receivers have a minimum signal amplitude for reception of 5mVP-P according to the J2497 specification and also 

observed as practically 10mVP-P in testing. This small minimum signal amplitude enables small-signal bitbanging and RF-induced attacks. 

It is also necessary to have a small minimum signal amplitude because the technology needs to function on triple-trailers where the 

signals could be greatly attenuated between the last trailer and tractor brake controller needing to receive a trailer ABS fault message. 



 
A defense against these small signal amplitude attacks is to attenuate (reduce) the signal amplitude of inbound powerline signals to the 

brake controller. This might not work in triple-trailer configurations but is possible in others.  

PROT2 loading with priority override frames 
In the trailer PLC research performed in collaboration with AIS and ultimately presented at DEF CON 28 CHV it was observed that it is 

possible to create J2497 frames with a MID that does not match the MID of their body J1708 content. This was also observed as default 

behavior for WABCO TCS II trailer ABS units in testing and development for this document. Since the J2497 MID should be used for 

arbitration, it is hence possible to create J2497 frames of an arbitrarily high priority irrespective of the J1708 MID priority. 

A defense can be mounted using these by sending long frames with highest priority override (00). 

PROT3 trailer equipment sends priority override frames 
To avoid a DoS attack using priority override frames and/or to work in conjunction with PROT2, the trailer equipment could use priority 

override frames itself for LAMP frames. 

PROT4 trailer wiring shielding 
Perhaps the most obvious possible defense against induced RF: use shielded trailer wiring. It is also possible to try to shielded tractor-

trailer ‘pigtail’ / ‘umbilical’ cables. The concept is worth discussing; however, due to the wavelengths of the frequencies involved and the 

triple-trailer results we have no reason to think pigtail/umbilical shielding would function as a mitigation. This protection, PROT4, 

pertains to shielded trailer wiring, not shielded umbilical cables.  

The fact that dry-vans are less susceptible than tankers certainly suggests that having the trailer wiring run somewhere that isn’t ‘out in 

the open’ is better; however, the metal-decking dry-van result indicates that wrapping the trailer wiring in ‘too much’ metal makes 

susceptibility worse. We suspect that in the case of the metal-decked dry-van the chassis ground was joined to the wiring ground which 

‘added’ susceptible metal to make a better antenna; hence the recommendation here for any wiring shielding is to try shielded trailer 

wiring where the chassis ground is left floating from the shield ground. This is captured below in Figure 1. 



 

 

Figure 1 PROT4 trailer wiring shielding 

PROT5 RF chokes between chassis ground and wiring ground 
The fact that dry-vans with metal deck are more susceptible than those without suggests that the metal chassis has something to do 

with the susceptibility and we suspect that there is one or more galvanic connections from chassis to ground wire in the trailer wiring. 

Therefore, reducing the galvanic connections to a minimum (ideally 1) and replacing each connection with an RF choke capable of 

suppressing the chirp band should reduce susceptibility. This is shown below in Figure 2. The performance of the RF choke needs to be 

able to attenuate any J2497 below the minimum receiver sensitivity. This is shown below in Figure 3. 



 

 

Figure 2 PROT5 RF chokes between chassis ground and wiring ground 



 

 

Figure 3 PROT5 RF chokes between chassis ground and wiring ground Minimum Attenuation 



 
PROT6 chirp filter inline 
Reception of any and all traffic can be inhibited by installing a filter in-line with the receiving equipment. This is shown below in Figure 4. 

The filter needs to attenuate signals in the chirp frequency range by at least 80dB for differential mode (typical J2497) signals and by at 

least 33dB for common mode signals. This is shown below in Figure 5 and Figure 6, respectively. This filter can be of a ‘lowpass’ or a 

‘bandstop’ design. There are J2497 filters installed in tractors by some OEMs. These filters separate/remove/segment powerlines in the 

cab from the powerlines to the trailer by over-attenuating J2497 chirps that pass through them. Since the trailer ABS also controls the 

trailer ABS fault lamp with a relay-output the lamp control line also needs to be filtered and an RF choke as discussed in PROT5 should 

suffice. 

The same technology could be packaged into an inline connector and installed on the trailer or tractor equipment. In the case of trailer 

equipment the connector is a standard Delphi/weatherpack 5 pin connector. For the tractor’s controllers it varies per supplier and 

model and the connectors are dense, complex and expensive thus an aftermarket inline solution is unlikely. 



 

 

Figure 4 PROT6 chirp filter inline 



 

 

Figure 5 PROT6 chirp filter inline Minimum Differential Mode Attenuation 



 

 

Figure 6 PROT6 chirp filter inline Minimum Common Mode Attenuation 

PROT7 continuous dynamic address claimer 
J2497 includes a dynamic addressing feature where all trailer equipment can change its J2497/J1708 MID (address) dynamically in 

response to detecting a transmitter on its current address. This is relevant as a defense option because all the dangerous J2497 frames 



 
encountered so far involve Data Link Escape commands (DLE) – PID 254 (0xfe). This proprietary space of commands is unicast, i.e. it 

requires a destination address and the J2497 equipment changes its address as mentioned above. 

Assuming that all dangerous commands are also ultimately DLEs then attackers can be denied their malicious goal by denying them a 

destination address for the DLE. By repeatedly performing a dynamic address claim denial attack on the bus (insight and tests by Dan 

Salloum @ AIS) the receiving equipment can be forced to drop all incoming DLEs and/or change their unicast address often enough to 

make multi-frame DLE impossible and single-frame DLE sporadic. 

Note that this address changing behavior is the practical behavior observed on trailer equipment and not the J2497 specification of 

dynamic addressing. The latter appears to not be implemented on trailer equipment. The available trailer Brake MIDs are 137, 138, 139, 

246 and 247. The J2497 specification states that dynamic addressing should use MIDs in the range 88-110; however, in practice this 

range has not been implemented; only dynamic use of MIDs 137, 138, 139, 246 and 247 have been observed. The behavior of dynamic 

addresses appears to be the same as in the J2497 specification otherwise. Any trailer ECU that receives a (valid) message with an MID 

that conflicts with its own will ‘move over’ to a different MID. The message payload can be anything valid, in Dan’s original concept a PID 

4 ‘Dynamic MID claim’ was used. To minimize potential impact on any J2497 networks and ECUs this defense should choose a payload 

that is short and has no effect on a J2497 network but is still valid. A Data Link Escape (DLE) message to a MID that can’t be present 

should work: any receiver on the J2497 network will drop the message without further processing. We chose Engine #8 (MID 7). i.e. this 

defense is achieved by sending the following 3 byte payload messages in a loop, with a minimum time between send of 6ms: 

o 137, 254, 7, 0 

o 138, 254, 7, 0 

o 139, 254, 7, 0 

o 246, 254, 7, 0 

o 247, 254, 7, 0 

PROT8 loading with LAMP keyhole signal 
The J2497 medium is multiple access and additive with all transmitters so two transmitters of the same power transmitting at the same 

time will likely corrupt each other’s data for all receivers. The theory of this defense is to corrupt all J2497 messages for all receivers 

except a small list of allowed signals: just the required LAMP ON message for simplicity. According to the spec, transmitting continuous 

J2497 and then terminating it would work: All well-behaved transmitters will gallop together for that frame period but the priority of 

LAMP messages will win out. There are (at least) two problems. First, attackers do not need to respect the wait times of the spec and 

they can create priority override frames. Second, trailer equipment doesn’t respect wait times either. 



 
This first problem can be addressed by sending an almost-complete LAMP message (everything except the last couple bits of CRC) 

immediately after the corrupting signal. Only a LAMP ON message that aligns perfectly with the almost-complete ‘keyhole’ messages 

would validly complete the transmission. Achieving perfect alignment is tricky to accomplish in practice because transmitter phase is 

arbitrary and intercharacter delay is variable across suppliers. But all other messages on the wire, aligned or not, have their reception 

corrupted including attacker messages; only LAMP ON (when aligned to the keyhole) is permitted. 

To address variability in transmitter phases, the solution is simple: try both possible phases (positive-going first, then negative-going 

first) in turn. For intercharacter delay, which can also be thought of as extra stop bits, our testing showed variability across suppliers. The 

WABCO TCS II has more inter-character delay than the Haldex TABS or Bendix TABS6. The WABCO unit stretches stop bits to the 

maximum two bit time length. The Bendix unit emits a variable intercharacter delay, always decreasing throughout the message, usually 

starting at 1 extra bit time, then 1, then 0 but 1-0-0 is also common. The Haldex unit follows the same behavior as Bendix. The solution is 

to try each of these sequences of extra stop bits for each of the phases also. 

The other part of aligning the keyhole brings us to the second problem: trailer equipment transmitters do not follow the wait times in 

the specification. Each of the three pieces of equipment used in testing and development had a different unpredictable delay after bus-

idle.  Fortunately, it was found that the delay before the target frame is sent could be ‘groomed’ because it depended on the length and 

checksum of the frame sent prior. The relationship between prior frame length and the delay was such that if the prior frame was too 

short the interframe delay was unpredictable; this is surmised to be due to queuing in the transmitters. The result is that, for a 

sufficiently large prior frame size, the expected interframe delay was more predictable (for 2 of the three supplier’s units tested) but still 

different across suppliers. WABCO and Bendix controllers’ interframe delay is comparable but the Haldex unit was found to never queue 

regardless of prior frame size. The sufficient (minimum) size found for grooming the WABCO and Bendix controllers was 16 bytes 

payload; which is fortunately less than the specification’s maximum 21 bytes. 

In Figure 7 below we show a selection of screenshots showing the interframe delay both across and within the three supplier’s devices 

discussed above for a prior frame length at the 21 byte J1708 maximum with a valid CRC. 



 

 

Figure 7 Examples of variable interframe delay, 0a00 LAMP ON message only 



 
Figure 7 captures the variability of the (groomed) interframe delay after a 21byte payload, correct-CRC message of random bytes. The 

preceding frame used to groom the interframe delay, the ‘door’ signal, ideally causes as little impact as possible on CPU resources of 

connected devices and also has no ‘side effects’ on the devices either (e.g. crashes, chuffs, etc.). For reasons similar to PROT7 continuous 

address claimer, selecting a DLE to engine #8 will be unlikely to affect anything; furthermore, using the minimum (grooming) length of 16 

bytes is best to minimize CPU resources. Finally, sending a CRC-corrupt door signal was chosen because the result is that the door signal 

will not show up in logs and hopefully will get dropped at the earliest processing steps in receivers. 

The expected interframe delays were calibrated by measuring the UART times (as depicted in Figure 7) after the CRC-corrupted door 

signal described above. For the WABCO TCS II the most common delays were 45.0 and 40.6 bit-times (UART 9600bps 104.17 us). For 

Bendix TABS6 the most common delays were 39.5, 40.6, and 46.1 bit-times. For the HALDEX TABS – as mentioned above – the delays 

could not be groomed. The Haldex unit transmits its frames periodically, regardless of the state of the bus. To accommodate this the 

only thing to do is create keyholes as quickly as possible and to ensure that the period between keyholes doesn’t align with the Haldex 

transmit period of 500ms. 

Creating keyholes as quick as possible would also help ensure that trailer ABS fault telltales are displayed to drivers rapidly enough to 

satisfy the regulations. All the possible combinations of delays and phases totals 10. The total set is transmitted every ~320ms; all three 

units: Bendix TABS6, WABCO TCS II and Haldex TABS sends LAMP ON every 0.5 s. Empirically the average wait before a LAMP ON is 

matched is 1.5s for Bendix, 7s for WABCO and 12.5s for Haldex. The performance of the keyhole signal as described thus far on the three 

units is presented in Figure 8 below. Even in the worst case, the delay in between LAMP ON messages is less than 35s. 



 

 

Figure 8 Test Results for time between allowed LAMP ON messages 

The FMCSA regulation governing trailer ABS fault display to the driver has no language requiring time limits on transmission of a fault. 

The J2497 standard requires that systems displaying the trailer ABS fault turn on the indicator for 2.5 seconds in response to reception of 

the command; it also requires that systems turn off the indicator if no messages are received for 10s. Therefore, the result of taking 30s 

to get around to the correct parameters to match the LAMP signal is a blinking indicator with either 2.5s or 10s on and a period of 30s. 

This doesn’t appear to violate the regulations and would still communicate the failure to the driver. 

There are some other details of creating the sequence of door and keyhole signals to be replayed as a defense. The full details are 

captured in the source code Listing 1 below. There are two more parts worth some explanation here. The first, since it can also be used 

as a protection all by itself: the ‘jamming signal.’ The second, since it is an important optimization for all J2497 transmitters: the J2497 

preamble is not needed at all. 



 
The spread spectrum chirps employed in J2497 make the receivers quite robust in the presence of noise during the body phase of a 

signal – even to the presence of other J2497 chirps that are out of phase. For example, in Figure 9 the SSC P485 is seen here happily 

locking on to and receiving a comparable power signal even though the door signal arrives right in the middle of it (in the body phase / 

PSK). 

 

 

Figure 9 J2497 receiver locking on to a slightly stronger signal during reception of another signal 

In the preamble phase the receivers are more susceptible to corruption/interruption. For example, in Figure 10: reception is stopped 

when that collision occurs in the preamble (ASK) phase: 

 

  

 

Figure 10 J2497 Receivers are more sensitive to corruption during the preamble phase 

The fact that the receivers are more sensitive to disruption in the pre-amble phase means that a keyhole approach where the allowed 

signal preamble and body fragment are emitted first works better at stopping unwanted signals than properly sized segments of dead-



 
air; however, this also means that even with the door signal successfully blocking signals a clever attacker that know this could ‘race’ the 

keyhole. Because as a rule of thumb for signals of equal power, whichever signal gets their preamble (most importantly the SYNC train) 

out first will have their body received correctly. 

There is little promise of stopping signals after the preamble for signals of comparable amplitude. It is tenuous to assume that the door 

signal would be higher power than an attacker’s signal, even in the RF induced case where attackers are inducing signals of very low 

signal amplitude. Anecdotally, during testing of triple trailers the RF induced signals were found to be received more reliably by the last 

trailer than signals produced by a PLC TestCON diagnostic adapter connected to the tractor-trailer J560 connector. It seems that the 

signal amplitude in triples could be itself marginal and also could vary along the trailer combination as a result of transmission line 

effects. This is not even to mention that the types of attacks other than RF-induced can produce signal amplitudes comparable to all 

signals emitted by the tractor-trailer equipment. Thus, all things considered, the defense should not be designed to assume that the 

defending technology will always have a larger amplitude than the attacker. 

The longest interframe delay before emitting a keyhole is ~5ms. This could admit an attacker-controlled 3 byte payload frame. This isn’t 

big enough to allow any of the known chuff or roll call commands but it’s entirely possible that there are high impact 3 byte payload 

J2497 frames. The solution to prevent this is sending a signal which corrupts reception by other receivers but does pre-empt the 

transmissions, so that our keyhole still has a chance of matching an allowed message. A signal that can corrupt a frame without resetting 

idle detection (as in the solution to the Haldex extra delay) could also be used here to block any attackers racing with the small gap. This 

important jamming signal is alluded to in the J2497 specification where it says “The PLC for trucks technology is more sensitive to 

constant carrier interference than to broadband interference […]” and testing revealed that a constant carrier in the 300 – 400 KHz 

range works well for this purpose: it corrupts reception but does not trigger idle end detection in the J2497 receivers. In testing we 

found that 376.369KHz is the best constant carrier for this purpose. 

There is another important fact that enables the functioning of the keyhole signal: the J2497 preamble phase is not needed at all to 

cause receivers to emit bits in the body phase. If a J2497 body-phase signal is transmitted (from the 5 sync symbols onwards) then a 

J2497 receiver can successfully decode it into UART signals. During development, when using a preamble on the keyhole signal the most 

common result was the transmitter that was carefully aligned-to would stop transmitting because the preamble collision was detected. 

Exploiting the fact that the preamble is unnecessary lets the keyhole align to a transmitter without that occurring. 

It turns out that the susceptibility to corruption of J2497 in the preamble phase is a double-edged sword. This property works against the 

desired outcome of the door signal by both causing queuing of frames in transmitters by blocking those transmissions and triggering end 

of idle. A period of the constant carrier interfering signal can be added after the keyhole to ensure that messages which are late or 

longer and do not match are blocked. But whatever the length of the later jamming signal was extended to during development there 



 
were always cases where signals would get through at the point between the late jamming signal and the next door signal. Since the 

preamble is not needed at all this is also an excellent candidate for dropping it too. 

The keyhole signal mitigation can be constructed (depicted in some detail in Figure 12 below) and can function at blocking most non-

allowed signals at comparable power. There are some unpredictable aspects to the J2497 receivers and 100% guarantees cannot be 

made; however, testing at comparable power of the keyhole signal and an attacker signal results in less than 1 in 1000 3byte payloads 

getting through and zero payloads of 4 or more bytes getting through for tests of 5mins. During these tests LAMP ON messages were 

also allowed through successfully as well. In Figure 11 below is an example of a keyhole mitigation signal lining up with a trailer ABS ECUs 

LAMP ON message and being successfully decoded by the J2497 receiver under test and a descriptive diagram of the phases of the 

keyhole signal. In Figure 13 a detailed capture of another example of a successful alignment of a keyhole is presented, showing the 

phases of the signal which are also presented in Figure 12. 

 

Figure 11 Example of successful keyhole signal example: matching Trailer ABS ECU's emitted 0a00 LAMP ON message 



 

 

Figure 12 Explanation of phases of keyhole mitigation signal 



 

 

Figure 13 Description of a successful keyhole signal example 

The full details of how to construct a keyhole signal train for a given set of allowed messages is captured in the MIT-licensed python3 source 

captured below in Listing 1. This is a python module whose public function generate() will yield an array of signals to be played back in a 

loop on a DAC or bit-banged on a GPIO. Please see the docstring of generate() for more details. 

1    # Copyright (c) 2022 National Motor Freight Traffic Association Inc. 

2    # 

3    # Permission is hereby granted, free of charge, to any person obtaining a copy 

4    # of this software and associated documentation files (the "Software"), to deal 

5    # in the Software without restriction, including without limitation the rights 

6    # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 

7    # copies of the Software, and to permit persons to whom the Software is 

8    # furnished to do so, subject to the following conditions: 

9    # 

10   # The above copyright notice and this permission notice shall be included in all 

11   # copies or substantial portions of the Software. 

12   # 

13   # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 

14   # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

15   # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 

16   # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 

17   # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 

18   # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 

19   # SOFTWARE. 

20    

21   import binascii 



 
22   import bitstring 

23   import itertools 

24   import numpy as np 

25   from scipy.signal import chirp 

26    

27   DEFAULT_ALLOWED_MESSAGES = [b'\x0a\x00', ]  # LAMP ON only by default 

28    

29   DEFAULT_SUPPLIER_PARAMETERS = [ 

30       {  # WABCO 0a00 measured @ after crc-corrupted 16byte payload door signal 

31           'label': 'wabco tcs ii 2s1m basic msh 400 500 101 0', 

32           'expected_delays': [45.0, 41.7, ], 

33           'extra_stop_bits': [2, 2],  # tends to do 2 extra stop bits followed by 2 extra stop bits (but can vary) 

34           'expected_phases': [-1, 1],  # tends to use one phase over the other but just use equal probability 

35       }, 

36       {  # Bendix TABS6 0a00 measured @ after crc-corrupt 16B payload door signal 

37           'label': 'bendix tabs6 5014016 ES1301 K003236', 

38           'expected_delays': [47.2, 41.7, 40.6, ], 

39           'extra_stop_bits': [1, 0],  # tends to do 1 extra stop bits followed by 0 extra stop bit (but can vary) 

40           'expected_phases': [-1, 1], 

41       }, 

42       # {  # Haldex TABS 0a00 measured @ after crc-corrupt 16B payload door signal 

43       #    'label': 'haldex tabs H16 0676', 

44       #    'expected_delays': [46.1, ], 

45       #    'extra_stop_bits': [1, 0],  # tends to do 1 extra stop bits followed by 0 extra stop bits (doesn't vary) 

46       #    'expected_phases': [-1, 1],  # only one phase observed in testing 

47       # }, 

48       # because Haldex TABS doesn't queue messages to send, picking any expected delay is fine and because both of the 

49       # other parameters match the Bendix unit, it is sufficient to omit these supplier parameters 

50   ] 

51    

52   # There is a minimum period for the keyhole signals which was discovered during testing. Bendix TABS6 transmitters 

53   # verify their sends and will retry if their transmission is corrupted, which is great! Except that they also have a 

54   # priority inversion bug so if they can't successfully transmit a lower priority message e.g. 89c20302b502 any 

55   # higher-priority messages e.g. 0a00 (LAMP ON) will queue. If the door+keyhole signals are transmitted too rapidly 

56   # then the TABS6 will trigger this priority inversion bug and there will be _no_ required LAMP messages. We also send 

57   # all-jam periods sometimes to reduce the chance of forever-retries due to keyholes corrupting the signals too 

58   MIN_PERIOD_US = 32000 

59   DEFAULT_PERIOD_US = MIN_PERIOD_US 

60    

61    

62   def generate(sample_rate, allowed_messages=None, keyhole_supplier_parameters=None, period_us=None, 

63                calibration_mode=False): 

64       """  

65       Use this function to get a complete set of keyhole mitigation signals. Play them on a loop to prevent all but the  

66       allowed messages from being received by any J2497 receiver on the powerline segment.  

67     

68       The signals will probably need to be prepared for playback on your DAC. They will work even when played on a  

69       bit-banged DAC (1-bit / PWM etc.). Here's an example of preparing the signals for playback @ 1Msps on a signed  

70       8bit output:  

71     

72       dac_ready = [(x * 127).astype('int8').tobytes() for x in j2497_keyhole.generate(1E6)]  



 
73     

74       And these can be played back-to-back on a loop e.g.  

75     

76       while True:  

77           for s in dac_ready:  

78               dac_device_driver_api.write(s)  

79     

80       If you want to bit-bang the output, we have found that even the simplest PWM rule will work:  

81     

82       bangs = [(x >= 0) for x in j2497_keyhole.generate(10E6)]  

83     

84       Note that there is no dynamic generation required. The signals can be pre-computed and played back from non-volatile  

85       storage as well.  

86     

87       The interframe delays from most J2497 transmitters depend on the length of the allowed messages,  

88       the crc-corrupted state of the door signal and the period of the signals. Changes to any of these should be  

89       followed by re-calibrating the measured delays and updating the supplier parameters.  

90     

91       :param sample_rate: sample rate of resulting signal, must be at least 800KHz, 1MHz is good  

92       :param allowed_messages: messages to allow via keyholes  

93       :param keyhole_supplier_parameters: supplier keyhole parameter list  

94       :param period_us: period of the door+keyhole signals generated  

95       :param calibration_mode: if true, generate modified waveforms used to calibrate the supplier parameters  

96       :return: an iterator of np array signals of float32 values in [-1.0, 1.0]  

97       """ 

98       if sample_rate < 800E3: 

99           raise ValueError("sample rate must be >= 800 KHz") 

100      if keyhole_supplier_parameters is None: 

101          keyhole_supplier_parameters = DEFAULT_SUPPLIER_PARAMETERS 

102      if allowed_messages is None: 

103          allowed_messages = DEFAULT_ALLOWED_MESSAGES 

104      if period_us is None: 

105          period_us = DEFAULT_PERIOD_US 

106      jam_amplitude = 1 

107      if calibration_mode: 

108          # to calibrate supplier parameters the keyholes must be suppressed to measure expected delays 

109          # and jams must be suppressed to receive J1708 and hence measure expected delays 

110          jam_amplitude = 0 

111   

112      assert period_us >= MIN_PERIOD_US 

113      # it is important for transmitters that don't queue LAMP ON (e.g. Haldex) that multiples of the period of the 

114      # door+keyhole do not align with the 0.5s period of the LAMP messages sent. We take anything within a sync 

115      # symbol width as 'alignment'. 

116      period_samples = int(period_us * sample_rate / US_PER_SEC) 

117      remainder = (0.5 * sample_rate) % period_samples 

118      alignment_limit = len(SYNC_BITS) * BODY_BIT_TIME_US * sample_rate / US_PER_SEC 

119      assert remainder > alignment_limit 

120      assert period_samples - remainder > alignment_limit 

121   

122      doors = _door_signals(sample_rate) 

123      # combining doors and keyholes with `next(cycle(doors))` in the for loop below is fine if there are more keyholes 



 
124      # than there are doors. This is a generator, so confirm that after the loop -- see below 

125      doors_len = len(list(doors)) 

126      doors = itertools.cycle(_door_signals(sample_rate)) 

127   

128      keyhole_count = 0 

129      for keyhole in _keyhole_signals(sample_rate, allowed_messages, keyhole_supplier_parameters, calibration_mode): 

130          keyhole_count = keyhole_count + 1 

131          door_n_keyhole = np.append(next(doors), keyhole) 

132          assert len(door_n_keyhole) < period_samples 

133          late_jam = jam_amplitude * _get_jam(sample_rate, period_samples - len(door_n_keyhole)) 

134          door_n_keyhole = np.append(door_n_keyhole, late_jam) 

135   

136          yield door_n_keyhole 

137      # confirm that there were, in fact, at least as many keyholes than doors 

138      assert keyhole_count >= doors_len 

139   

140      # We need to send all-jam periods sometimes to reduce the chance of triggering a priority inversion bug. See the 

141      # MIN_PERIOD_US comments for more details. 

142      all_jam = next(doors) 

143      assert len(all_jam) < period_samples 

144      the_jam = jam_amplitude * _get_jam(sample_rate, period_samples - len(all_jam)) 

145      all_jam = np.append(all_jam, the_jam) 

146      yield all_jam 

147   

148      return 

149   

150   

151  def _door_signals(sample_rate): 

152      """  

153      Generates 'door' signals whose purpose is to hold J2497 transmitters in wait, causing them to queue their  

154      messages to be sent and thus grooming the expected delays to better the chances of a keyhole aligning perfectly  

155      with an allowed message.  

156    

157      All the values in DEFAULT_SUPPLIER_PARAMETERS are measured using the values below. Any changes to the  

158      payload or CRC necessitate re-calibrating DEFAULT_SUPPLIER_PARAMETERS.  

159    

160      :param sample_rate:  

161      :return: a numpy float32 array of samples valued in [-1.0, 1.0]  

162      """ 

163      # TODO: vary MID `89` through all possible trailer ABS MIDs [ 0x89, 0x8a, 0x8b, 0xf6, 0xf7 ] to _also_ 

164      #   perform an address denial mitigation at the same time as the keyhole protection. Will need to both use correct 

165      #   CRC and also re-calibrate the values in DEFAULT_SUPPLIER_PARAMETERS 

166      mids = [b'\x89', ] 

167      for mid in mids: 

168          door_bits = _get_payload_bits(mid + binascii.unhexlify('fe0757aaaaaaaaaaaaaaaaaaaaa71c'), 

169                                        checksum=binascii.unhexlify('cc'))  # Correct CRC is `b4` 〜(￣▽￣〜) 

170          yield _get_payload_chirps(door_bits, sample_rate) 

171   

172   

173  US_PER_SEC = 1e6 

174  UART_BIT_TIME_US = 104.17  # i.e. 9600bps 



 
175  BODY_BIT_TIME_US = 100  # J2497 body bit time 

176  SYNC_SYMBOL_TIME_US = (5  # bits in start sync symbol 

177                         ) * BODY_BIT_TIME_US 

178   

179  # Intellon ssc p485 measured J2497 -> UART latency. Needed because measured/expected delays are UART delays 

180  FROM_J2497_OVER_TO_UART_OVER_US = 48.3 

181  # time duration for crc and the rest of a message after the payload 

182  TIME_AFTER_PAYLOAD_US = (1  # start bit 

183                           + 8  # bits in crc byte 

184                           + 1  # stop bit 

185                           + 7  # bits in end sync symbol 

186                           ) * BODY_BIT_TIME_US 

187   

188   

189  def _keyhole_signals(sample_rate, allowed_messages, keyhole_supplier_parameters, calibration_mode): 

190      """  

191      Generates keyhole signals which will permit only J2497 messages with matching payloads in the allowed messages list.  

192      There are multiple possible keyholes which are generated according to the combinations of the supplier parameters  

193      given in keyhole_supplier_parameters.  

194    

195      To calibrate your own keyhole_supplier_parameters, set calibration_mode to true and measure some J2497 waveforms!  

196    

197      :param sample_rate:  

198      :param allowed_messages: messages to permit by matching keyholes  

199      :param keyhole_supplier_parameters: delays, extra stop bits and phases to match for keyholes specific to devices  

200      :param calibration_mode: set to true to make keyholes that can be used to calibrate keyhole_supplier_parameters vals  

201      :return: a numpy float32 array of samples valued in [-1.0, 1.0]  

202      """ 

203      keyhole_amplitude = 1 

204      jam_amplitude = 1 

205      if calibration_mode: 

206          # to calibrate supplier parameters the keyholes must be suppressed to measure expected delays 

207          keyhole_amplitude = 0 

208          # and jams must be suppressed to receive J1708 and hence measure expected delays 

209          jam_amplitude = 0 

210      blank_after_payload = np.zeros(int(TIME_AFTER_PAYLOAD_US * sample_rate / US_PER_SEC), np.float32) 

211   

212      for allowed_message in allowed_messages: 

213          for params in keyhole_supplier_parameters: 

214              current_expected_delays_bit_times = params['expected_delays'] 

215              current_extra_stop_bits = params['extra_stop_bits'] 

216              current_expected_phases = params['expected_phases'] 

217   

218              keyhole_bits = _get_payload_bits(allowed_message, checksum=None, 

219                                               extra_stop_bits=current_extra_stop_bits, 

220                                               truncate_at_checksum=True) 

221   

222              for current_expected_delay_bit_time in current_expected_delays_bit_times: 

223                  keyhole_signal_start_us = current_expected_delay_bit_time * UART_BIT_TIME_US \ 

224                                            + FROM_J2497_OVER_TO_UART_OVER_US \ 

225                                            - UART_BIT_TIME_US \ 



 
226                                            - SYNC_SYMBOL_TIME_US 

227                  keyhole_signal_start_samples = int(keyhole_signal_start_us * sample_rate / US_PER_SEC) 

228   

229                  # TODO: maybe overlap the jam and door signal a little bit (1/2 a body bit time probably). 

230                  #   For now terminate the jam as soon as the door signal starts. 

231                  early_jam = jam_amplitude * _get_jam(sample_rate, keyhole_signal_start_samples) 

232   

233                  for current_phase in current_expected_phases: 

234                      # TODO: prepare keyhole with an arbitrary mask. In testing so far all LAMP ON receivers reject 0a00 

235                      #   messages with an invalid CRC; therefore it is acceptable to blank the CRC and end symbol. If 

236                      #   receivers (ABS tractor controllers) are found that receive 0a00 messages with invalid CRC then 

237                      #   blanking a subset of bits of the 0a00(f6) message will be necessary. The following append of the 

238                      #   valid payload with silence for the CRC and end sync symbol will need to be replaced with a more 

239                      #   general substitution of silence for a 'mask' (a set of bits). For 0a00 the mask will need to be 

240                      #   of some of the logical '1' bits in the MID 0a and some in the payload as well since the silence 

241                      #   gaps are decoded as '1' or '0' unpredictably but usually in the same consecutively. 

242                      keyhole_signal = np.append( 

243                          keyhole_amplitude * current_phase * _get_payload_chirps(keyhole_bits, sample_rate), 

244                          blank_after_payload 

245                      ) 

246   

247                      keyhole_signal = np.append(early_jam, keyhole_signal) 

248                      yield keyhole_signal 

249   

250   

251  # Any constant carrier in the range 300E3-400E3 works; however, this frequency was optimized by testing for the best 

252  # corrupting constant carrier at 3/4 power of the target signal. 

253  DEFAULT_JAM_FREQ = 376.379E3 

254   

255   

256  def _get_jam(sample_rate, duration_samples, freq=DEFAULT_JAM_FREQ): 

257      """  

258      this is a really dumb and degenerate use of a chirp function to make a single component sinusoid ＞﹏＜  

259    

260      :param sample_rate:  

261      :param duration_samples: duration of the signal in samples  

262      :param freq: frequency of the constant carrier interference signal  

263      :return: a numpy array of samples valued in [-1.0, 1.0]  

264      """ 

265      constant_carrier = chirp( 

266          np.linspace(0, duration_samples / sample_rate, duration_samples), 

267          f0=freq, f1=freq, t1=duration_samples / sample_rate, phi=-90, method='linear') 

268      return constant_carrier 

269   

270   

271  SYNC_BITS = bitstring.ConstBitArray(bin='11111') 

272  START_BITS = bitstring.ConstBitArray(bin='0') 

273  STOP_BITS = bitstring.ConstBitArray(bin='1') 

274  ENDSYNC_BITS = bitstring.ConstBitArray(bin='1111111') 

275   

276   



 
277  def _get_payload_bits(payload, checksum=None, extra_stop_bits=None, truncate_at_checksum=False): 

278      if extra_stop_bits is None: 

279          extra_stop_bits = [0, ] 

280      payload_bits = bitstring.BitArray() 

281   

282      payload_bits.append(SYNC_BITS) 

283      char_count = 0 

284      for b_int in bytes(payload): 

285          b_bytes = bytes([b_int]) 

286          b_bits = bitstring.BitArray(bytes=b_bytes) 

287          b_bits.reverse() 

288   

289          payload_bits.append(START_BITS)  # start bit 

290          payload_bits.append(b_bits)  # bit-reversed byte 

291          payload_bits.append(STOP_BITS)  # stop bit 

292          extra_stop_bit = extra_stop_bits[-1] if char_count > len(extra_stop_bits) else extra_stop_bits[char_count] 

293          for i in range(extra_stop_bit): 

294              payload_bits.append(STOP_BITS)  # stop bit 

295   

296      if truncate_at_checksum: 

297          return payload_bits 

298   

299      if checksum is None: 

300          checksum_bits = _get_checksum_bits(payload) 

301      else: 

302          checksum_bits = bitstring.BitArray(bytes=checksum) 

303      checksum_bits.reverse() 

304   

305      payload_bits.append(START_BITS) 

306      payload_bits.append(checksum_bits) 

307      payload_bits.append(STOP_BITS) 

308   

309      payload_bits.append(ENDSYNC_BITS) 

310   

311      return payload_bits 

312   

313   

314  # TODO: there are definitely more efficient ways to do the J1708 checksum 

315  def _get_checksum_bits(payload): 

316      msg = str(bitstring.ConstBitArray(bytes=payload).bin) 

317      checksum = 0 

318      for n in range(0, len(msg), 8): 

319          checksum = checksum + int(msg[n:n+8], 2) 

320   

321      # Two's Complement (10) 

322      binint = int("{0:b}".format(checksum))             # Convert to binary (1010) 

323      flipped = ~binint                                  # Flip the bits (-1011) 

324      flipped += 1                                       # Add one_bits (two's complement method) (-1010) 

325      intflipped = int(str(flipped), 2)                  # Back to int (-10) 

326      intflipped = ((intflipped + (1 << 8)) % (1 << 8))  # Over to binary (246) <-- .uint 

327      intflipped = '{0:08b}'.format(intflipped)          # Format to one_bits byte (11110110) <-- same as -10.bin 



 
328   

329      checksum_bits = bitstring.BitArray(bin=intflipped) 

330      return checksum_bits 

331   

332   

333  def _get_payload_chirps(j2497_payload_bits, samp_rate, local_chirp=None): 

334      if local_chirp is None: 

335          local_chirp = _generate_single_chirp(samp_rate) 

336      wave = np.zeros(0, np.float32) 

337      for n in j2497_payload_bits: 

338          if n: 

339              wave = np.append(wave, local_chirp) 

340          else: 

341              wave = np.append(wave, local_chirp * -1) 

342      return wave 

343   

344   

345  def _generate_single_chirp(samp_rate): 

346      wave = np.hstack(( 

347          np.tile(np.hstack(( 

348                  chirp(np.linspace(0,        63E-6,  int(63E-6 * samp_rate)), 

349                        f0=203E3, f1=400E3, t1=63E-6, phi=-90, method='linear'), 

350                  chirp(np.linspace(63E-6,    67E-6,  int(4E-6 * samp_rate)), 

351                        f0=400E3, f1=100E3, t1=67E-6, phi=-90, method='linear'), 

352                  chirp(np.linspace(67E-6,    100E-6, int(33E-6 * samp_rate)), 

353                        f0=100E3, f1=200E3, t1=100E-6, phi=-90, method='linear') 

354                  )), 1) 

355      )) 

356      target_len = int(100e-6 * samp_rate) 

357      wave = np.append(wave, np.zeros(np.max([0, target_len - len(wave)]))) 

358      return wave 

359   

360   

361  def _generate_single_chirp_alt(samp_rate): 

362      wave = np.hstack(( 

363          np.tile(np.hstack(( 

364                  chirp(np.linspace(0,        63E-6,  int(63E-6 * samp_rate)), 

365                        f0=203E3, f1=394E3, t1=63E-6, phi=-90, method='linear'), 

366                  chirp(np.linspace(63E-6,    67E-6,  int(4E-6 * samp_rate)), 

367                        f0=400E3, f1=100E3, t1=67E-6, phi=-90, method='linear'), 

368                  chirp(np.linspace(67E-6,    100E-6, int(33E-6 * samp_rate)), 

369                        f0=1E3,   f1=216E3, t1=100E-6, phi=-30, method='linear') 

370                  )), 1) 

371      )) 

372      target_len = int(100e-6 * samp_rate) 

373      wave = np.append(wave, np.zeros(np.max([0, target_len - len(wave)]))) 

374      return wave 

375 

Listing 1 Keyhole Mitigation source code 



 
PROT9 flooding with jamming signal 
As was introduced in PROT8, above, there is a signal alluded to in the J2497 specification where it says “The PLC for trucks technology is 

more sensitive to constant carrier interference than to broadband interference […].” This interference effectively blocks reception of 

J2497 signals when present at comparable amplitude. By ‘comparable’ we mean near the same amplitude as the signal that is targeted 

to be blocked. In our testing we observed intermittent blocking at -2dB but at 0dB (equal amplitude) or greater the blocking is very 

reliable. 

This protection involves transmitting this signal on the powerline segment at an amplitude comparable to the target signals to be 

blocked. Recall there are three types of attacks, at different expected power levels. e.g. transmitting the jamming signal to stop the 

highest amplitude, Malware-initiated, well-formed, attacks would also block the other two lower expected amplitude attacks but even 

transmitting with a basic 5V GPIO bitbang method would block both the other types of attack. 

This protection alone is not likely to be sufficient for application to defending fleets because, like PROT6 chirp filter inline, this protection 

alone will block reception of all traffic including the LAMP messages required for the only industry standard way to satisfy regulations in 

North America; however, it can be combined with other techniques to produce what could be viable solutions for fleets. 

Solutions 
In this section we present combinations of some of the techniques above into solutions with merit for mitigating the risks to fleets posed by the 

J2497 attacks. Although there are 3 types of J2497 attack, both of the malware-initiated types are less likely since they first require remote code 

execution.  The RF induced type is practical and of some concern to the industry; therefore, solutions addressing the RF induced J2497 attack will 

be considered here. 

The vulnerable technology, J2497, has been fielded since 2001 and the service lifetime of trailers is 15 years in their first life and another 15 in 

the second-hand market; therefore, bolt-on solutions for fielded tractors and trailers should be the focus of development and testing. For new 

equipment, the industry should be dropping all J2497 features entirely except for backwards compatibility with LAMP ON detection only.  For 

trailer equipment this means migrating all diagnostics to whatever newer trailer buses are established as the norm. For tractor equipment this 

means removing support for reception of any J2497 message other than LAMP messages and also protecting the backwards compatible trailers 

from attack; we propose such a solution below in SOLNF. All the other solutions are applicable to retrofit on existing equipment. 

Trucking is a small-business industry where >90% of the fleets are operating less than 6 trucks and operators often don’t own or otherwise 

control the trailer equipment they haul (in North America) and trailers generally outnumber tractors; therefore, solutions which can be installed 

on the tractor should be prioritized. 

 



 
 Technique Combinations Solution Pros Solution Cons 

SOLNA LAMP ON 
firewall 

PROT6 chirp filter inline 
plus: 
MCU with dual J2497 
interfaces 

• Can be configured to allow fleet-
specific uses of J2497 

• A variation of this can protect 
tractor ABS also1 

• Must be installed on each ECU, 
tractor and trailer 

SOLNB LAMP detect 
circuit LAMP ON 
sender 

PROT6 chirp filter inline 
plus: 
MCU that sends LAMP ON 
when LAMP circuit is 
asserted 

• This is likely a technology already 
developed for purchase to retrofit 
pre-J2497 equipment that had only 
trailer fault LAMPs 

• Must be installed on each trailer 
ECU 

• Won’t protect tractor ABS from 
attack e.g. ‘roll-call’ 

SOLNC trailer address 
denier 

Just PROT7 continuous 
dynamic address claimer 

• Simple blind-transmit defense 

(could bitbang it) 

• Possible against all types of J2497 
attacks (but not 100% see cons) 

• Can be installed on tractor 

• Unproven 

• RFI noise 

• May allow intermittent unicast 

attacks 

• Doesn’t protect tractor 

controllers 

• Might not prevent as-yet 
unknown exploit payloads and 
abuse commands that don’t 
require unicast J1708 

SOLND just RF chassis 
chokes 

Just PROT5 RF chassis 
chokes 

• Passive components, relatively 
cheap and easy to install. 

• Unproven, but may work based 

on our understanding of RF 

Induced attacks 

• Would only protect against RF 
induced attack 

• Must be installed on each trailer 

SOLNE LAMP keyhole Just PROT8 LAMP keyhole 
signal 

• Simple blind-transmit defense 

(could bitbang it) 

• Should prevent exploit payloads 

and abuse commands 

• Possible against all types of J2497 

attacks (but not 100% see cons) 

• Unproven, but initially confirmed 

on lab bench 

• Won’t prevent LAMP ON attacks 

• RFI noise 

• Can delay trailer ABS fault telltale 
by tens of seconds for Haldex 
trailer brake controllers 



 
• Asymmetrically impacts high data 

rate signals more than low-rate 
LAMP 

• Can be installed on tractor 

SOLNF (for new 
equipment) jamming 
signal and coherent 
removal of it 

PROT9 flooding with 
jamming signal plus 
coherent removal of that 
jamming signal at the 
tractor ECU 

• Should prevent exploit payloads 

and abuse commands 

• Possible against all types of J2497 

attacks (but not 100% see cons) 

• Enables new tractor brake 

controllers to protect backwards-

compatible J2497 trailers and still 

receive required LAMP messages 

• Won’t prevent LAMP ON attacks 

• RFI noise 

• Possible for new tractor brake 
ECUs only 

• Could yield an unprotected 
tractor brake controller if legacy 
J2497 commands aren’t also 
removed. 

SOLNG (for retrofit) 
jamming signal and 
coherent removal of it 

PROT9 flooding with 
jamming signal plus 
coherent removal of that 
jamming signal in 
dedicated J2497 receiver 
device for LAMP etc. 

• Should prevent exploit payloads 

and abuse commands 

• Possible against all types of J2497 

attacks (but not 100% see cons) 

• Can be installed on a tractor 

• Capable of custom reception of 
J2497 traffic 

• Won’t prevent LAMP ON attacks 

• RFI noise 

• Possible for trucks with accessible 
trailer fault telltale wiring or using 
the PGN 61441 for the telltale 

1Each tractor ABS controller has its own supplier-specific cable and as such it is not practical to produce a bolt-on mitigation for attacks 

on tractor ABS controllers. The suppliers need to release software updates for the tractor controllers or adapt one or more of the above 

to be bolt-on protections for their tractor controllers (e.g. SOLNA). 

SOLNA LAMP ON firewall 
A conventional firewall approach to J2497 can be realized by combining the defense of chirp filters to isolate the J2497 device and using 

a MCU with two separate J2497 interfaces to receive and selectively forward J2497 messages bi-directionally (depicted in Figure 14 

below). This would permit fleets that are using J2497 features other than the LAMP messages to continue use of those features while 

also denying any other messages which could contain exploit payloads or abuse commands. The usual firewall caveats of all security 

benefits being subject to correct configuration apply to this system. Care must be taken by fleets to not add abuse commands (such as 

solenoid test) to the firewall passlist; furthermore, firewall designers must take care to prevent malicious reconfiguration and bypass of 

the firewall. 



 

 

Figure 14 SOLNA LAMP ON firewall 

SOLNB LAMP detect circuit LAMP ON sender 
All possible messages receivable by a trailer ECU can be denied and still permit sending the required LAMP messages without the risks of 

incorrect or malicious reconfiguration of firewall rules as in SOLNA. All trailer ABS controllers have a fault lamp control pin which is 

driven on fault conditions that match the sending of LAMP messages. A device could be wired to the trailer lamp or the lamp control line 

which sends J2497 LAMP messages is response to lamp control line state changes. This is shown in Figure 15 below. When combined 

with a chirp filter than denies both messages from and to the trailer ABS controller the result is a J2497 network segment that can still 

communicate trailer ABS faults to the tractor but which cannot response to any potential exploit payloads or abuse commands. Note 



 
that since the device which sends LAMP messages has no receiver requirements it could be built using GPIO toggling / bit-banging to 

send J2497 instead of using the more expensive J2497 transceivers. 

 

Figure 15 SOLNB LAMP detect circuit LAMP ON sender 

It would furthermore be possible to package the J2497 LAMP message sender into a trailer lamp product, reducing parts count, a ‘LAMP 

ON’ lamp (depicted in Figure 16 below). 



 

 

Figure 16 SOLNB LAMP detect circuit “LAMP ON” Lamp Device 

SOLNC trailer address denier 
This proposed solution involves only deploying the PROT7 continuous dynamic address claim technique to deny any unicast address 

trailer targets to attackers. The PROT7 technique has no receiver requirements it could be built using GPIO toggling / bit-banging to send 

J2497 instead of using the more expensive J2497 transceivers. 



 
This defense works by relying on trailer equipment changing their ‘addresses’ (MIDs) in response to receiving a J2497 message with an 

MID matching their own at the time. It could only possibly defend against attacks that use ‘unicast’ messages e.g. Data Link Escape (DLE) 

messages. It could not defend from other as-yet unidentified attacks that do not use unicast e.g. any PID-based messages. 

This defense does not require that the transmission be of equal or greater power than the attacker signal, only that it is received. In 

testing bitbanged J2497 signals it has been observed that those from 5V GPIOs can still be received at the last ABS controller in a triple 

road train; therefore, for most deployments no amplification is needed, only coupling (e.g. a capacitor) is needed to the power line 

segment. 

This solution could be retrofitted on existing tractors (depicted in Figure 17 below) where it would only defend against attack as 

described above but still permit all other J2497 traffic to be received by the tractor and trailer equipment. On some tractors the power 

pins at the diagnostic and/or RP1226 connector are unfiltered from the those of the J560 wiring and the device described here could 

even be installed at those locations. 



 

 

Figure 17 SOLNC trailer address denier 

SOLND just RF chassis chokes 
This proposed solution is to deploy only the PROT5 RF chassis chokes. No requirements for send or receive of J2497. Could be retrofitted 

onto some trailers if they have a single chassis ground connection to trailer wiring and/or can be modified to have a single ground 

connection. 



 
SOLNE LAMP keyhole 
This proposed solution involves only deploying PROT8 LAMP keyhole signal to deny all signals except LAMP on the powerline segment. 

The PROT8 technique has no receiver requirements it could be built using GPIO toggling / bit-banging to send J2497 instead of using the 

more expensive J2497 transceivers. 

This solution could be retrofitted on existing tractors (depicted in Figure 18 below) where it would protect both the tractor and all 

connected trailer ABS ECUs from receiving attacker J2497 signals but still permit the tractor ECU to receive the necessary LAMP 

messages. On some tractors the power pins at the diagnostic and/or RP1226 connector are unfiltered from the those of the J560 wiring 

and the device described here – as was also the case with SOLNC above – could even be installed at those locations. 

This solution works by deploying a transmitter of the PROT8 LAMP keyhole signal, which is a blind-transmit solution; however, as 

described in the PROT8 section above, to function reliably the defensive signal needs to be of an amplitude greater than or equal to that 

of the attacker signal. Thus, to defend against malware-initiated & well-formed attacks the transmitter needs amplification to the same 

magnitude as that of the strongest trailer or tractor equipment fielded. Furthermore, since it was observed in testing on triple trailers 

that sometimes RF-induced signals were received more reliably than those generated by diagnostic adapters, it stands to reason that to 

defend against even just the lowest powered attack of the three: RF-induced attacks, some amplification will be needed to successfully 

defend a triple trailer configuration. 



 

 

Figure 18 SOLNE LAMP keyhole 

SOLNF (for new equipment) jamming signal and coherent removal of it 

The constant-carrier interference signal introduced and applied in the PROT8 Lamp keyhole section, called the ‘jamming signal’ has 

useful properties which can be applied to create another possible solution for defending against J2497 attacks. Because the jamming 

signal corrupts reception of signals of comparable amplitude, does not trigger idle end detection in transmitters, and does not pre-empt 

transmission of messages it can be used to mount a defense against reception of any J2497 messages: transmit the jamming signal 

continuously. A continuous transmission of the jamming signal would also, however, block reception of the LAMP messages which are 



 
required. Because the powerline signals are superimposed it is possible to remove the jamming signal by signal subtraction; the device 

responsible for transmitting the jamming signal is well-suited to perform this subtraction since it already has the precise signal and can 

thus remove it in a coherent manner, leaving only the other transmitters’ J2497 signals. With the jamming signal removed the resulting 

signal can be fed to any J2497 receiver. All the other J2497 receivers on the powerline segment will have their reception corrupted but 

the device coherently removing the jamming signal will be capable of correctly receiving all the messages. 

This defense can be integrated into new tractor brake ECUs and would protect all the connected (legacy) trailer ABS ECUs from receiving 

attacker J2497 signals but still permit the new tractor brake ECU to receive necessary (for backwards compatibility) LAMP J2497 

messages. To also achieve protection of the (new) tractor brake controller, these controllers will need to have all J2497 removed except 

for LAMP ON processing. 

SOLNG (for retrofit) jamming signal and coherent removal of it 

The same defense (as SOLNF) is possible in a form that can be retrofitted onto existing tractors in a separate device transmitting the 

jamming signal. Since it is a separate device, reception of J2497 is also corrupted at the tractor ECU. This has the benefit of also blocking 

attacks on the tractor ECU via J2497 but, of course, the required LAMP messages are also blocked. In the case where the tractor’s trailer 

ABS fault instrument cluster telltale both responds to a known J1939 message (e.g. the J1939 standard PGN 61441) and the instrument 

cluster J1939 segment is accessible for retrofit then the limitation of corrupting reception of the required LAMP messages can be 

overcome. The device transmitting and coherently removing the jamming signal can response to the reception of LAMP messages with 

the appropriate J1939 signal. In this manner all of the ECUs of the tractor and trailer are protected from J2497 attacks but also the 

required LAMP telltale can still function. 

For the same reasons detailed in SOLNE above some amplification will be necessary to reliably block reception of attacker signals. 

This solution could be retrofitted on existing tractors (depicted in Figure 19 below) where it would protect both the tractor and all 

connected trailer ABS ECUs from receiving attacker J2497 signals but still permit the driver to observe the necessary trailer ABS fault 

telltale. The dedicated receiver could also be customized to receive and react to arbitrary J2497; however, special care should be taken 

since those messages could be attacker induced, even RF-induced. Reacting to only the regulatory required LAMP messages is by far the 

safest solution. On some tractors the power pins at the diagnostic and/or RP1226 connector are unfiltered from the those of the J560 

wiring and the device described here – as was also the case with SOLNC above – could even be installed at those locations. 



 

 

Figure 19 SOLNG (for retrofit) jamming signal and coherent removal of it 


